Center of Mass in Two Dimensions

Let R be a region of the plane. Center of mass is average position in the region. To approximate, let $f(x, y)$ be mass density function. The fraction of mass in region R_{i} is approximately

$$
\frac{f\left(x_{i}, y_{i}\right) A\left(R_{i}\right)}{\iint_{R} f(x, y) d A}
$$

The fraction of the x-coordinate is

$$
\frac{x_{i} f\left(x_{i}, y_{i}\right) A\left(R_{i}\right)}{\iint_{R} f(x, y) d A}
$$

Summing and taking the limit, we obtain

$$
\bar{x}=\frac{\iint_{R} x f(x, y) d A}{\iint_{R} f(x, y) \mathrm{dA}} .
$$

Similarly, we have

$$
\bar{y}=\frac{\iint_{R} y f(x, y) d A}{\iint_{R} f(x, y) \mathrm{dA}} .
$$

