
Week 14 Lectures Math 223 Spring 2008

Section 17.7: Surface Integrals

Surface Integral: Let S be surface in xyz coordinate system, which is the
image of the region Ω in the uv plane with respect to the parameterization
r(u, v) = (x(u, v), y(u, v), z(u, v)). Take your surface, chop it up into little
surfaces, pick a representative point in the little surface, multiply the inte-
grand at this point by the area of the little surface, add together. In the
limit, obtain

∫ ∫

S

H(x, y, z) dσ =

∫ ∫

Ω

H(u, v)||ru × rv|| dudv

where ru = (xu, yy, vu) and rv = (xv, yv, zv). Dividing a surface integral by
the surface area gives the average value of the integrand over the surface.
Given a mass density function as the integrand, we can compute the mass of
the surface. We can also compute the centroid of a uniform density surface
and the center of mass of a variable density surface using surface integrals.

Flux of a vector field across an oriented surface: Center of mass
coordinate x can be viewed as average value of x-coordinates in the surface,
weighted by area distribution. Another average value we can compute is the
component of the a vector field F (x, y, z) = (P, Q,R) in the direction of the
unit normal to the surface n(x, y, z). The component is F (x, y, z) ·n(x, y, z),
and the average value is

∫ ∫
F (x, y, z) · n(x, y, z)||ru × rv||∫ ∫ ||ru × rv||.

The numerator is called the flux of F across the surface. Since the unit
normal vector can be computed as

n(x, y, z) =
ru × rv

||ru × rv|| ,

we have

flux =

∫ ∫
F (x, y, z) · (ru × rv) =

∫ ∫ ∣∣∣∣∣∣

P Q R
xu yu zu

xv yv zv

∣∣∣∣∣∣
.
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Using u = x and v = y and the surface z = f(x, y) we get

flux =

∫ ∫ ∣∣∣∣∣∣

P Q R
1 0 fx

0 1 fy

∣∣∣∣∣∣
.

See also page 1071.

Geometric interpretation: If F = (P, Q,R) represents a velocity vector of a
current in units of feet per second, then F · n denotes speed of current in
the direction of the normal vector across the surface and has units of feet
per second. The surface area has units of square feet. Flux is average value
of F · n times the area of the surface, so it has units of ft3 sec. It can be
interpreted as rate at which the current is crossing the surface in the direction
of the unit vector.

Section 17.9: The Divergence Theorem

Divergence of the vector field F = (F1, F2, F3) at the point (x, y, z):
Let S denote the surface of a rectangular box with vertex at (x, y, z) and
dimensions ∆x × ∆y × ∆z extending in the positive directions away from
(x, y, z). The approximate divergence of F at (x, y, z) is the average flux of
F across all 6 faces of the box per unit volume:

average div F =

∫ ∫ ∫
S

F · n dσ

∆x∆y∆z
.

The exact divergence at (x, y, z) is the limit of these calculations as the box
shrinks to the point (x, y, z).

Divergence Calculation: Let the box have vertex at (x, y, z) and extending
by ∆x, ∆y, and ∆z units in the coordinate directions. Use the value of the
vector field F at the 3 corners of the box connected to (x, y, z) to approximate
the strength of the vector field along the 6 faces. The flux calculation yields

∫ ∫ ∫

S

F · n dσ ≈ (F1(x + ∆x, y, z)− F1(x, y, z))∆y∆z+

(F2(x, y + ∆y, z)−F2(x, y, z))∆x∆z + (F3(x, y, z + ∆x)−Fx(x, y, z))∆x∆y.

The average divergence is therefore
∫ ∫ ∫

S
F · n dσ

∆x∆y∆z
≈ F1(x + ∆x, y, z)− F1(x, y, z)

∆x
+

F2(x, y + ∆y, z)− F2(x, y, z)

∆y
+
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F3(x, y, z + ∆x)− Fx(x, y, z)

∆x
.

Taking the limit as ∆x, ∆y, ∆z → 0, we obtain

div F =
∂F

∂x
+

∂F

∂y
+

∂F

∂z
.

We can now estimate flux across a small box as(
∂F

∂x
+

∂F

∂y
+

∂F

∂z

)
∆x∆y∆z.

Divergence Theorem: Flux across the surface of a solid region Ω can be
expressed as the triple integral of the divergence. In symbols,∫ ∫

surface of Ω
F · n dσ =

∫ ∫ ∫

Ω

(
∂F

∂x
+

∂F

∂y
+

∂F

∂z

)
dxdydz.

Proof: Push a bunch of boxes together with corners at (xi, yi, zi) and di-
mensions ∆x×∆y ×∆z to approximate the solid region Ω and add up the
total flux across the surfaces of the boxes. The contribution to flux across
faces which oppose each other cancel out, and the net flux is across the outer
surfaces of the boxes. In this way we get an approximation to the flux across
the surface of Ω: ∫ ∫

surface of Ω
F · n dσ ≈

∑
i

(
∂F

∂x
(xi, yi, zi) +

∂F

∂y
(xi, yi, zi) +

∂F

∂z
(xi, yi, zi)

)
∆x∆y∆z.

In the limit we get the flux across the surface of Ω, which can be expressed
as the triple integral∫ ∫ ∫

Ω

(
∂F

∂x
+

∂F

∂y
+

∂F

∂z

)
dxdydz.

Note that this can be used to compute surface area via a triple integral. Just
use F = n. Consider the sphere of radius r regarded as a level surface of
f(x, y, z) = x2 + y2 + z2. The gradient is (2x, 2y, 2z), hence n(x, y, z) =
1
r
(x, y, z). The divergence of n is 3

4
. So the surface area of the sphere is∫ ∫ ∫

Ω
3
r

dxdydz, where Ω is the region inside the unit sphere. This produces
3
r

times the volume of the sphere of radius r. Since the volume of the unit
sphere is 4

3
πr3, the surface area of the sphere is 4πr2.
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