
Week 12 Lectures

Sections 13.4 and 13.5

Section 13.4: Green’s Theorem

Green’s Theorem: Let C be positively oriented simple closed curve which
encloses region D. Then

∫

C

P dx + Q dy =

∫ ∫

D

Qx − Py dA.

Proof: Let F (x, y) = (P,Q). This is equivalent to proving

∫

C

F · dr =

∫ ∫

D

Qx − Py dA.

First consider C the rectangle with lower corner at (a, b) and extending right
and up ∆ units. Decompose C into C1+C2+C3+C4. Then we have

∫

C

F · dr =

∫

C1

F · dr +

∫

C2

F · dr +

∫

C3

F · dr +

∫

C4

F · dr.

Approximate the functions P (x, y) and Q(x, y) by

P (x, y) ≈ P (a, b) + Px(a, b)(x− a) + Py(a, b)(y − b)

and
Q(x, y) ≈ Q(a, b) + Qx(a, b)(x− a) + Qy(a, b)(y − b).

Then we have

F (x, y) ≈ F (a, b) + (x− a)(Px(a, b), Qx(a, b)) + (y − b)(Py(a, b), Qy(a, b)).

Let C1 be represented by r(t) = (a + t, b) where 0 ≤ t ≤ ∆. Then

F (r(t)) · r′(t) = (F (a, b) + t(Px(a, b), Qx(a, b))) · (1, 0) = P (a, b) + tPx(a, b).

Let C2 be represented by r(t) = (a + ∆, b + t) where 0 ≤ t ≤ ∆. Then

F (r(t)) ·r′(t) = (F (a, b)+∆(Px(a, b), Qx(a, b))+t(Py(a, b), Qy(a, b))) ·(0, 1) =
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Q(a, b) + ∆Qx(a, b) + tQy(a, b).

Let C3 be represented by r(t) = (a + ∆− t, b + ∆) where 0 ≤ t ≤ ∆. Then

F (r(t))·r′(t) = (F (a, b)+(∆−t)(Px(a, b), Qx(a, b))+∆(Py(a, b), Qy(a, b)))·(−1, 0) =

−P (a, b) + (−∆ + t)Px(a, b)−∆Py(a, b).

Let C4 be represented by r(t) = (a, b + ∆− t) where 0 ≤ t ≤ ∆. Then

F (r(t)) · r′(t) = (F (a, b) + (∆− t)(Py(a, b), Qy(a, b))) · (0,−1) =

−Q(a, b) + (−∆ + t)Qy(a, b).

Therefore ∫

C1

F · dr +

∫

C2

F ·+
∫

C3

F · dr +

∫

C4

F · dr =

∫ ∆

0

(2t−∆)(Px + Qy) + (Qx − Py)∆ dt = (Qx − Py)∆
2.

Now let D be covered by squares of dimension ∆×∆. When we add together
the work done around all the little rectangles, opposing sides cancel, leaving
work done around the boundary of D, namely C. On the other hand, we are
adding together (Qx−Py)∆

2, so computing the mass of D with mass density
function Qx − Py. Hence the theorem.//

Note that by choosing P and Q such that Qx − Py = 1 we have a way to
compute area.

Section 13.5: Curl and Divergence.

Let F = (P, Q,R) be a vector field. The curl of F is a new vector field:

curl F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
.

Note that curl F · k = Qx − Py, an expression which appears in Green’s
Theorem. So Green’s Theorem can be re-written

∫

C

F · dr =

∫ ∫

D

curl F · k dA.
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Translation: the work done by F in the direction of C is equal to the double
integral of the normal component of the curl across the region enclosed by
C. This suggests that Green’s Theorem is a special case of a 3-dimensional
theorem.

The curl of ∇f is 0. Reason: mixed-partial derivatives are equal. If a vector
field is defined on all of R3 and its curl is zero everywhere, then F = ∇f
for some scalar field f , hence is conservative. Proved later using Stoke’s
Theorem, section 13.8.

Method to decide if F is conservative: Want to show that F = ∇f . If so, the
curl of F is 0. So if not, F is not conservative. Note also that if the curl IS
zero, then F is conservative (but it takes Stokes’s Theorem in Section 13.8
to prove this).

Divergence of F is Fx +Fy +Fz. So the divergence of a vector field is a scalar
field.

Now consider F (x, y) = (P (x, y), Q(x, y)). By Green’s Theorem,

∫ ∫

D

div F dA =

∫ ∫

D

Qy + Px dA =

∫

C

−Q dx + P dy =

∫

C

(P,Q) · (−y′(t), x′(t)) dt =

∫

C

F · n ds

where

n(t) =
(−y′, x′(t))
|r′(t)| = unit normal to C.

Translation: The line integral of the normal component of F about C is equal
to the double integral of the divergence of F across the region.

The divergence of the curl F is zero. Reason: mixed partial derivatives are
equal. This yields a method to test if a vector field is the curl of another: its
divergence must be zero.
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