Section 16.6: Triple Integrals

Example: compute mass and center of mass. Gives rise to Riemann sum over rectangular solids.

Section 16.7: Reduction to Repeated Integrals

Assume function being integrated is $f(x, y, z)$, over region $a_{1} \leq x \leq a_{2}, \phi_{1}(x) \leq y \leq \phi_{2}(x)$, $\psi_{1}(x, y) \leq z \leq \psi_{2}(x, y)$. The Riemann sum is

$$
\sum_{i, j, k} f\left(x_{i}^{*}, y_{j}^{*}, z_{k}^{*}\right) \Delta x \Delta y \Delta z
$$

The x_{1}^{*} contribution is

$$
\sum_{j, k} f\left(x_{1}^{*}, y_{j}^{*}, z_{k}^{*}\right) \Delta y \Delta z \times \Delta x
$$

the left-hand factor of which is the Riemann sum for the type I double integral with coordinate axes y, z, and $w=f\left(x_{1}^{*}, y, z\right)$. Hence x_{1}^{*} contribution is approximately

$$
\int_{y=\phi_{1}\left(x_{1}^{*}\right)}^{y=\phi_{2}\left(x_{1}^{*}\right)}\left[\int_{z=\psi_{1}\left(x_{1}^{*}, y\right)}^{z=\psi_{1}\left(x_{1}^{*}, y\right)} f\left(x_{1}^{*}, y, z\right) d z\right] d y \times \Delta x=F\left(x_{1}^{*}\right) \Delta x
$$

where

$$
F(x)=\int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)}\left[\int_{z=\psi_{1}(x, y)}^{z=\psi_{1}(x, y)} f(x, y, z) d z\right] d y
$$

Similarly, the x_{2}^{*} contribution is

$$
\sum_{j, k} f\left(x_{2}^{*}, y_{j}^{*}, z_{k}^{*}\right) \Delta y \Delta z \times \Delta x
$$

the left-hand factor of which is the Riemann sum for the type I double integral with coordinate axes y, z, and $w=f\left(x_{2}^{*}, y, z\right)$. Hence the x_{2}^{*} contribution is approximately

$$
\int_{y=\phi_{1}\left(x_{2}^{*}\right)}^{y=\phi_{2}\left(x_{2}^{*}\right)}\left[\int_{z=\psi_{1}\left(x_{2}^{*}, y\right)}^{z=\psi_{1}\left(x_{2}^{*}, y\right)} f\left(x_{2}^{*}, y, z\right) d z\right] d y \times \Delta x=F\left(x_{2}^{*}\right) \Delta x .
$$

Continuing in this fashion and putting the pieces together, the triple integral is approximately the Riemann sum

$$
\sum_{i} F\left(x_{i}^{*}\right) \Delta x
$$

and the exact answer is

$$
\int_{x=a_{1}}^{x=a_{2}} F(x) d x=\int_{x=a_{1}}^{x=a_{2}}\left[\int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)}\left[\int_{z=\psi_{1}(x, y)}^{z=\psi_{1}(x, y)} f(x, y, z) d z\right] d y\right] d x .
$$

Application: Find mass of tetrahedron with vertices $(1,0,0),(0,1,0),(0,0,1)$ and mass density

$$
x+y+z
$$

at position (x, y, z). Solution: $\iiint x+y+z d x d y d z$. To describe the region by inequalities, first describe the z interval given a fixed x and y, then describe the y interval given a fixed x in the $x y$ plane, then describe the x interval on the x axis. See page 991 .

Work out \#24 - see notes. Do not evaluate!

Section 16.8: Cylindrical Coordinates

Express x and y in terms of polar coordinates. Assume that the region $a_{1} \leq x \leq a_{2}$, $\phi_{1}(x) \leq y \leq \phi_{2}(x), \psi_{1}(x, y) \leq z \leq \psi_{2}(x, y)$ can be expressed in the form $a \leq \theta \leq b$, $\phi_{1}(\theta) \leq r \leq \phi_{2}(\theta), \psi_{1}(x, y) \leq z \leq \psi_{2}(x, y)$. Then we can view the triple integral formula above as a double integral $d x d y$ where the integrand is expressed as an integral $d z$. So we use the polar coordinates formula to write

$$
\begin{gathered}
\int_{x=a_{1}}^{x=a_{2}}\left[\int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)}\left[\int_{z=\psi_{1}(x, y)}^{z=\psi_{1}(x, y)} f(x, y, z) d z\right] d y\right] d x= \\
\int_{\theta=a}^{\theta=b}\left[\int_{r=\phi_{1}(\theta)}^{r=\phi_{2}(\theta)}\left[\int_{z=\psi_{1}(r \cos \theta, r \sin \theta)}^{z=\psi_{1}(r \cos \theta, r \sin \theta)} r f(r \cos \theta, r \sin \theta, z) d z\right] d r\right] d \theta .
\end{gathered}
$$

Work out \#20 - see notes.

