
Math 223 Week 5 Lectures: Sections 11.7, 11.8

Section 11.7: Maximum and Minimum Values

Local maximum value and local minimum value of z = f(x, y). There must
be local minimum holding one variable fixed, so both partial derivatives are
zero. This location called critical point of function.

Example: f(x, y) = (x− 1)2 + (y − 2)2 + 5 at (1, 2).

Note: there’s a min but no max. There may be neither. Example: f(x, y) =
(x − 1)2 − (y − 2)2 + 5. Consider just changing x or just changing y. This
point is called saddle point.

Method: Second Derivative test, page 646. Consider

f(x, y) = p(x− 1)2 + q(y − 2)2 + 5.

It works! Note also that no information is given when D = 0. Consider
f(x, y) = px4 +qy4. Can get a local max, a local min, or a saddle, depending
on p or q.

Extreme Value of a function: the largest or smallest output value (global,
not local).

Extreme Value Theorem: page 649.

How to find extreme values: First inspect the local extreme values. This
requires that you find stationary points in the interior of the domain, because
computing ∇f requires a limit calculation and limits are defined at interior
points.

Next, check boundary points. Compare.

Example: Temperature function f(x, y) = x2 + 4y2 + 10x defined on square
of length 1 with vertex at origin and sitting in first quadrant. There are no
stationary points in the interior. So the maximum temperature is going to
occur on the boundary somewhere. Parameterize the sides of the square.

Example: Temperature function on and within circle x2 +y2 = 100. Station-
ary point is in interior. Parameterize the circle as r(θ) = (10 cos θ, 10 sin θ).
Then F (θ) = 100 cos2 θ + 400 sin2 θ + 10 cos θ = 400 − 300 sin2 θ + 10 cos θ,
F ′(θ) = −600 sin θ cos θ − 10 sin θ. Solving F ′(θ) = 0 determines four points
of the circle. Compare.
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Do some word problems. For example, find minimum distance between y =
x2 and y = x− 1. Minimize f(p, q) = distance between (p, p2) and (q, q− 1).
More generally, two arbitrary curves.

Section 11.8: Lagrange Multipliers

Problem: Maximize f(x, y) subject to g(x, y) = c.

Solution: Let C be the curve defined by g(x, y) = c. Let (x0, y0) ∈ C be
the location of a local maximum of f(x, y) when restricted to points in C.
Let r(t) be a trajectory in C which satisfies r(0) = (x0, y0). Then f(r(t))
has a local maximum at t = 0, therefore ∇f(r(0)) · r′(0) = 0. Also, we have
g(r(t)) = c for all t, therefore ∇g(r(0)) · r′(0) = 0. This means that both
∇f(r(0)) and ∇g(r(0)) are perpendicular to r′(0). Hence they are parallel
to each other. Hence

∇f(x0, y0) = λ∇g(x0, y0)

for some λ. We should be able to solve for λ and (x0, y0) using the two
equations

∇f(x0, y0) = λ∇g(x0, y0) and g(x0, y0) = c.

λ is called a Lagrange Multiplier.

Example: Minimize x2 + y2 on the hyperbola xy = 1.

Solution: The function is f(x, y) = x2 + y2. The hyperbola is a level curve
of g(x, y) = xy. The stationary points (x0, y0) satisfy

∇f(x0, y0) = λ∇g(x0, y0),

(2x0, 2y0) = λ(y0, x0),

2x0 = λy0 2y0 = λx0,

hence (x0, y0) = (±1,±1). Therefore the minimum value of x2 + y2 is 2.

Example: Maximize rectangular solid volume subject to surface area 6a2.

Solution: Maximize f(x, y, z) = xyz on the level curve of g(x, y, z) = 2xy +
2xz + 2yz corresponding to c = 6a2. Solve for λ, get three equal solutions.
They imply x = y = z = a.

Maximize f(x, y, z) subject to g(x, y, z) = c and h(x, y, z) = d: Let r(t) lie in
both level surfaces. Want ∇f ·r′(0) = 0, ∇g ·r′(0) = 0, and ∇h ·r′(0) = 0. So
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r′(0) is perpendicular to the g and h gradients, so can be taken to be normal
to these gradients, so normal to all linear combinations (the plane defined by
them). This places the gradient of f in this plane, so ∇f = λ∇g + µ∇h.

Work out some problems.
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