Math 223 Week 4 Lectures: Sections 11.5, 11.6

Section 11.5: The Chain Rule

Temperature on metal plate: $T(x, y)=10+x^{2}+4 y^{2}$. Temperature at position $(2,5): T(2,5)=114$. What direction does bug walk in initially to drop temperature as fast as possible in degrees per foot?

Head h units in direction $(\cos \theta, \sin \theta)$. Change in temperature is approximately $T_{x}(2,5) h \cos \theta+T_{y}(2,5) h \sin \theta$ degrees in h feet, hence rate is

$$
T_{x}(2,5) \cos \theta+T_{y}(2,5) \sin \theta
$$

degrees per foot. As a dot product,

$$
\frac{d T}{d h}=\left(T_{x}, T_{y}\right) \cdot(\cos \theta, \sin \theta)
$$

Call this $R(\theta) . R(\theta)$ is optimized when $R^{\prime}(\theta)=0,\left(T_{x}, T_{y}\right) \cdot(-\sin \theta, \cos \theta)=0$, i.e. when $\left(T_{x}, T_{y}\right)$ and $(-\sin \theta, \cos \theta)$ are perpendicular, i.e. when $\left(T_{x}, T_{y}\right)=$ $\lambda(\cos \theta, \sin \theta)=\sqrt{T_{x}^{2}+T_{y}^{2}}(\cos \theta, \sin \theta)$. Hence we get $\tan \theta=\frac{T_{x}}{T_{y}}, \theta=$ $\tan ^{-1} \frac{T_{x}}{T_{y}}$.
Incidentally, $R(\theta)=0$ when we use $\left(T_{x}, T_{y}\right) \cdot(\cos \theta, \sin \theta)=0,\left(T_{x}, T_{y}\right)=$ $\lambda(-\sin \theta, \cos \theta), \theta=-\tan ^{-1} \frac{T_{y}}{T_{x}}$.
Note also that $\left(T_{x}, T_{y}\right)=\sqrt{T_{x}^{2}+T_{y}^{2}}(-\sin \theta, \cos \theta)$. So the direction of no change (tangent direction) is perpendicular to the direction max and min change.
New question: suppose the bug walks along the parabolic curve $r(t)=$ $(x(t), y(t))=\left(t, t^{2}\right)$. How is the rate of change of temperature along this curve varying with respect to time? For example, as the bug passes through position $(2,4)$?

Change in temperature from position $r(t)$ to $r(t+h)$ is $T_{x} d x+T_{y} d y$. Note $d x=x(t+h)-x(t) \approx h x^{\prime}(t)$ and $d y=y(t+h)-y(t) \approx h y^{\prime}(t)$, so $\Delta T \approx T_{x} h x^{\prime}(t)+T_{y} h y^{\prime}(t)$. Moreover, change in position is approximately $h \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}$. Therefore rate of change of temperature is approximately

$$
R(t)=\frac{T_{x} x^{\prime}(t)+T_{y} y^{\prime}(t)}{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}=\frac{\left(T_{x}, T_{y}\right) \cdot r^{\prime}(t)}{\left|r^{\prime}(t)\right|}=\left(T_{x}, T_{y}\right) \cdot T(t) .
$$

At what position is temperature changing at a rate of 10 degrees per second? Answer: Can get an equation for t, but need to approximate the answer.

One can ask the same question about rate in terms of degrees per foot. By a unit analysis, degrees per foot is degrees per second divided by feet per second, so

$$
R(s)=\frac{R(t)}{\left|r^{\prime}(t)\right|}=\frac{\left(T_{x}, T_{y}\right) \cdot r^{\prime}(t)}{\left|r^{\prime}(t)\right|^{2}} .
$$

This is doable.
A general question: Given $z=f(x, y)$ and a path $r(t)=(x(t), y(t))$, let $F(t)=f(r(t))$ and compute $F^{\prime}(t)$. Answer: move from position $(x(t), y(t)$ to position approximately $\left(x(t)+h x^{\prime}(t), y(t)+h y^{\prime}(t)\right)$ from time t to time $t+h . \Delta F \approx f_{x}(r(t)) h x^{\prime}(t)+f_{y}(r(t)) h y^{\prime}(t)$, therefore $\frac{d F}{d t} \approx\left(f_{x}, f_{y}\right) \cdot r^{\prime}(t)$. This gives rise to the chain rule, Case 1, page 625.
Another question: given $f(x, y)$ and $R(s, t)=(x(s, t), y(s, t))$, let $F(s, t)=$ $f(R(s, t))$. What are F_{s} and F_{t} ? Fix t and let s increase to $s+h$, then compute $\frac{d f}{h}$. Note that $d s=h$ and $d t=0$, therefore $d x=x_{s} d s+x_{t} d t=x_{s} h$ and $d y=y_{s} d s+y_{t} d t=y_{s} h$, therefore $d f=f_{x} d x+f_{y} d y=f_{x} x_{s} h+f_{y} y_{s} h$, therefore $F_{s}=\frac{d f}{h}=f_{x} x_{s}+f_{y} y_{s}$. This gives the chain rule, Case 2, page 627. We can compute F_{t} similarly.
Implicit differentiation: Let $F(x, y)=c$ define y in terms of x. Find $\frac{d y}{d x}$.
Solution: As x increases to $x+d x, y$ increases to $y+d y$. In the mean time, $d F=0$ since we remain on the level curve of F. So we have

$$
0=d F=F_{x} d x+F_{y} d y
$$

hence

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

Now go back and find the tangent and normal to the isothermal line 114 degrees.

Section 11.6: Directional Derivatives and the Gradient Vector

The gradient vector of the function $f(x, y)$ is $\left(f_{x}, f_{y}\right)$. The directional derivative of f in the direction of the unit vector $u=\left(u_{1}, u_{2}\right)$ at position (x, y) is
the rate of change of f along the path $r(t)=(x, y)+t\left(u_{1}, u_{2}\right)$ at time $t=0$. As we have seen,

$$
\frac{d f}{d t}=\frac{f_{x} d x+f_{y} d y}{d t}=\frac{f_{x} t u_{1}+f_{y} t u_{2}}{t}=f_{x} u_{1}+f_{y} u_{2}=\left(f_{x}, f_{y}\right) \cdot\left(u_{1}, u_{2}\right)
$$

Hence we say

$$
D_{u} f(x, y)=\left(f_{x}, f_{y}\right) \cdot u
$$

To compute tangent vector, we set $\left(f_{x}, f_{y}\right) \cdot u=0$ to get $u=\frac{\left(-f_{y}, f_{x}\right)}{\sqrt{f_{x}^{2}+f_{y}^{2}}}$. To maximize or minimize $D_{u} f$, we maximize $\left|\left(f_{x}, f_{y}\right) \| u\right| \cos \theta$, where θ is the angle between them. We get a maximum when $\theta=0$ and a minimum when $\theta=\pi$. So for maximum we have $u=\frac{\left(f_{x}, f_{y}\right)}{\sqrt{f_{x}^{2}+f_{y}^{2}}}$ and for minimum we have $u=-\frac{\left(f_{x}, f_{y}\right)}{\sqrt{f_{x}^{2}+f_{y}^{2}}}$.
Tangent plane and normal line to $F(x, y, z)=c$ at (a, b, c) : Imagine a bug traveling along the path $r(t)=(x(t), y(t), z(t))$ passing through the point (a, b, c) at time zero. It's direction of travel will be in the plane tangent to this surface. So $r^{\prime}(0)$ will lie in the plane, assuming it has one endpoint at (a, b, c). Let's compute $r^{\prime}(0)$:
As t varies from 0 to $d t, x$ varies from a to $a+d x=a+x^{\prime}(0) d t, y$ varies from b to $b+d y=b+y^{\prime}(0) d t, z$ varies from c to $c+d z=c+z^{\prime}(0) d t$. Moreover, temperature does not vary, so $\frac{d F}{d t}=0$. In other words,

$$
0=F_{x} d x+F_{y} d y+F_{z} d z=F_{x} x^{\prime}(0) d t+F_{y} y^{\prime}(0) d t+F_{z} z^{\prime}(0) d t=0
$$

This says $\left(F_{x}, F_{y}, F_{z}\right) \cdot r^{\prime}(0)=0$. So the gradient is normal to the tangent plane. Hence the tangent plane equation and the normal line equation, page 640.

