Math 223 Week 3 Lectures: Sections 11.3, 11.4

Section 11.3: Partial Derivatives

Definition for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Geometric interpretation in terms of graph
Tangent plane calculation
Approximation: $L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$
Higher derivatives
Clairaut's Theorem page 613.
Work through problem 79, page 617. See Mathematica notebook.

Section 11.4: Tangent Planes and Linear Approximations

Review the tangent plane and approximation material.
Define differential, page 621, formula 10.
Do number 28. Use negative values for input differentials, compute $d V$, and call this the amount of metal.

