Math 223 Week 2 Lectures: Sections 10.9, 11.1, 11.2

Section 10.9: Motion in Space: Velocity and Acceleration

Position vector: r(t)

Velocity vector: v(t) = 7/(t)

Acceleration vector: a(t) = v'(t) = r"(t)

Examples: r(t) = (cost,sint,0), r(t) = (cost,sint, L), r(t) = (cost,sint, 7’;—22)

Expressing velocity vector and acceleration vector in terms of 7" and N:

o(t) = (1) = I HIT(0) = ST
a(t) =1'(t) = %Tjt %T’(t) = %T + %HT’(t)HN(t) =

d?s  ds d?s ds\ >

— T+ —T#)=—-—T+ [ — ) &N().

T AT +<dt> RN (2)
We write ar = % and ay = (%)2 K.

Computing ar efficiently:
arl +avN = a

ar(T-T)=a-T

r"(t) - r'(t

0 T0)
dt

Computing ay efficiently:
arl +avN = a
an(NxT)=axT

ay = |laxT|

L = @) x @)

ds
dt




When dealing with projectiles, balls, bullets, guns, etc, pretend that motion
occurs in the zy plane with acceleration —gj where g is 9.8 meters per second
squared or 16.0 feet per second squared. Now do problems 19 and 21, page
587.

If a particle is moving in 3-space such a way that its acceleration is always
toward the origin with magnitude inversely proportional to its distance from

the origin, then it must be moving in an elliptical orbit in a plane through the
origin. To see this, write r”(t) = —Wr(t). Then r”(t) is parallel to r(t),

so r(t) x r"(t) = 0. Therefore 4 (r(t) x r'(t)) = 0, therefore r(t) x r'(t) = h

for some constant vector h. So h is at all times perpendicular to r(t) and
r(t) is in the plane normal to h. We will now choose a coordinate system so

that 7(t) = |r(t)|(cosf(t),sin(t),0) and r"(t) = —W(cos 0(t),sind(t),0)
and h = (0,0, |r(t)[20'(t)).
We have

(r'xh) =r"xh+rxh=r"xh=(—asinbff acosbt, 0) =

(acos, asinf, 0)’,

therefore

' x h = (acosh,asinf,0)+ C = r+C.

«
r(t)]
Hence

@

r-(r' xh)=—|r]*+C-r=alr|+ cr| cos.

]
By properties of the dot and cross product,
r-(r'xh)=(rxr)-h=h-h=|h
Therefore
|h|? = a|r| + c|r| cosp.

This is the polar equation of an ellipse (one focus at origin, other on axis
perpendicular to C').

Moreover, equal areas are swept out in equal time periods. Reason: Let
A(t) = area swept out after ¢ units of time. Then A(t + h) — A(t) is approx-
imately equal to ||r(t) x r(t + h)||. Hence

At +h) = At) 1 r(t+h) —r(t)
; ~ g llr() x —————=]]




Let h — 0. Obtain

A1) = glir(e) < o)l = gInll

which is a constant rate.

Section 11.1: Functions of Several Variables
Function notation, domain, range

The graph of a function f : R* — R is the set of all points (z,y, z) where
2= f(z,y).

Graphing technique for z = f(x,y): project graph at height ¢ onto zy plane,
and label the level curve by c. Then lift level curves up by c.

Example: f(z,y) = 2? + 4y> + 10

Perhaps = and y have units of feet and z has units of degrees, and f(x,y)
measures temperature at location (z,y)

Level curves are ellipses
Graph is Elliptic Paraboloid

Level surfaces: same idea for higher dimensions.

Section 11.2: Limits and Continuity

Objective: define lim, .., f(x) = L. Intuitively, the distance between f(z)
and L, which is measured as | f(z) — L|, approaches 0 as the distance between
x and xg, measured as ||z — xg||, approaches zero.

Note: f(z) does not need to be defined at xq. Example: f(z,y) = %@) +u.
Limit as (z,y) approaches (0,5) is 5.

Example: lim g y)—(0,0) % doesn’t exist. Consider letting (z,y) approach

the origin in the direction (1,1): limit is . But in the direction (1,2): 2.

No consistent limit. So at the very least we want the same result coming in
along any line.

Example: lim g 40,0 ﬁifyz doesn’t exist. Along direction (1,m) where m #

0: approaches 0. Along the z-axis: approaches 0. But along the path (¢,t?):
approaches %



Definition: the limit is L if we are able to say the following: for each € > 0
we can find 6 > 0 such that whenever z is within § units of zy, f(x) is within
€ units of L.

Example: f(z,y) = 2x+2y+ 1. Limit as (z,y) approaches (0,0) is 1. Proof:
Let € = .1 be given. If 22 +9y? < 6? then —6 <z < Jand -0 < y < 4,
therefore —40 < 2z + 2y < 40, so we should pick § = % = .025. More
generally, we should pick § =

€

Z .
Function continuous at a point: limit can be evaluated by direct substitution.

Continuity on a set: continuous at all points of set.

Continuity properties: projections, sums, products, compositions are all con-
tinuous.

Rational polynomial functions are continuous where denominator is not zero.

The function f(z,y) = S";ﬂ + y where x # 0, f(z,y) = y where x = 0 is
not continuous at (0,1). However, we can modify this example to produce a
continuous functions.

Use of continuity: Extreme Value Theorem, page 912.

Consider f(z) = 2 where z # 0 and f(0) = 5. On the interval [—1, 1] there
is an absolute minimum but no absolute maximum.

Clairaut’s Theorem p. 613: continuity of first partials and mixed second
partials on an open set U guarantees equality of mixed partials on U. (Define
open set.)



