
Math 223 Week 2 Lectures: Sections 10.9, 11.1, 11.2

Section 10.9: Motion in Space: Velocity and Acceleration

Position vector: r(t)

Velocity vector: v(t) = r′(t)

Acceleration vector: a(t) = v′(t) = r′′(t)

Examples: r(t) = (cos t, sin t, 0), r(t) = (cos t, sin t, t
π
), r(t) = (cos t, sin t, t2

π2 ).

Expressing velocity vector and acceleration vector in terms of T and N :

v(t) = r′(t) = ||r′(t)||T (t) =
ds

dt
T (t)

a(t) = v′(t) =
d2s

dt2
T +

ds

dt
T ′(t) =

d2s

dt2
T +

ds

dt
||T ′(t)||N(t) =

d2s

dt2
T +

ds

dt
T ′(t) =

d2s

dt2
T +

(

ds

dt

)2

κN(t).

We write aT = d2s
dt2

and aN =
(

ds
dt

)2
κ.

Computing aT efficiently:

aTT + aNN = a

aT (T · T ) = a · T

aT =
r′′(t) · r′(t)

ds
dt

.

Computing aN efficiently:

aTT + aNN = a

aN(N × T ) = a× T

aN = ||a× T ||

aN =
||r′′(t) × r′(t)||

ds
dt
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When dealing with projectiles, balls, bullets, guns, etc, pretend that motion
occurs in the xy plane with acceleration −gj where g is 9.8 meters per second
squared or 16.0 feet per second squared. Now do problems 19 and 21, page
587.

If a particle is moving in 3-space such a way that its acceleration is always
toward the origin with magnitude inversely proportional to its distance from
the origin, then it must be moving in an elliptical orbit in a plane through the
origin. To see this, write r′′(t) = − α

||r(t)||3
r(t). Then r′′(t) is parallel to r(t),

so r(t) × r′′(t) = 0. Therefore d
dt

(r(t) × r′(t)) = 0, therefore r(t) × r′(t) = h

for some constant vector h. So h is at all times perpendicular to r(t) and
r(t) is in the plane normal to h. We will now choose a coordinate system so
that r(t) = |r(t)|(cos θ(t), sin θ(t), 0) and r′′(t) = − α

|r(t)|2
(cos θ(t), sin θ(t), 0)

and h = (0, 0, |r(t)|2θ′(t)).

We have

(r′ × h)′ = r′′ × h+ r′ × h′ = r′′ × h = (−α sin θθ′, α cos θθ′, 0) =

(α cos θ, α sin θ, 0)′,

therefore
r′ × h = (α cos θ, α sin θ, 0) + C =

α

|r(t)|
r + C.

Hence
r · (r′ × h) =

α

|r|
|r|2 + C · r = α|r| + c|r| cosψ.

By properties of the dot and cross product,

r · (r′ × h) = (r × r′) · h = h · h = |h|2.

Therefore
|h|2 = α|r| + c|r| cosψ.

This is the polar equation of an ellipse (one focus at origin, other on axis
perpendicular to C).

Moreover, equal areas are swept out in equal time periods. Reason: Let
A(t) = area swept out after t units of time. Then A(t+ h)−A(t) is approx-
imately equal to 1

2
||r(t) × r(t+ h)||. Hence

A(t+ h) − A(t)

h
≈

1

2
||r(t) ×

r(t+ h) − r(t)

h
||
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Let h→ 0. Obtain

A′(t) =
1

2
||r(t) × r′(t)|| =

1

2
||h||,

which is a constant rate.

Section 11.1: Functions of Several Variables

Function notation, domain, range

The graph of a function f : R2 → R is the set of all points (x, y, z) where
z = f(x, y).

Graphing technique for z = f(x, y): project graph at height c onto xy plane,
and label the level curve by c. Then lift level curves up by c.

Example: f(x, y) = x2 + 4y2 + 10

Perhaps x and y have units of feet and z has units of degrees, and f(x, y)
measures temperature at location (x, y)

Level curves are ellipses

Graph is Elliptic Paraboloid

Level surfaces: same idea for higher dimensions.

Section 11.2: Limits and Continuity

Objective: define limx→x0
f(x) = L. Intuitively, the distance between f(x)

and L, which is measured as |f(x)−L|, approaches 0 as the distance between
x and x0, measured as ||x− x0||, approaches zero.

Note: f(x) does not need to be defined at x0. Example: f(x, y) = sin(x)
x

+ y.
Limit as (x, y) approaches (0, 5) is 5.

Example: lim(x,y)→(0,0)
xy

x2+y2 doesn’t exist. Consider letting (x, y) approach

the origin in the direction (1, 1): limit is 1
2
. But in the direction (1, 2): 2

5
.

No consistent limit. So at the very least we want the same result coming in
along any line.

Example: lim(x,y)→(0,0)
x2y

x4+y2 doesn’t exist. Along direction (1, m) where m 6=

0: approaches 0. Along the x-axis: approaches 0. But along the path (t, t2):
approaches 2

5
.
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Definition: the limit is L if we are able to say the following: for each ǫ > 0
we can find δ > 0 such that whenever x is within δ units of x0, f(x) is within
ǫ units of L.

Example: f(x, y) = 2x+2y+1. Limit as (x, y) approaches (0, 0) is 1. Proof:
Let ǫ = .1 be given. If x2 + y2 < δ2 then −δ < x < δ and −δ < y < δ,
therefore −4δ < 2x + 2y < 4δ, so we should pick δ = .1

4
= .025. More

generally, we should pick δ = ǫ
4
.

Function continuous at a point: limit can be evaluated by direct substitution.

Continuity on a set: continuous at all points of set.

Continuity properties: projections, sums, products, compositions are all con-
tinuous.

Rational polynomial functions are continuous where denominator is not zero.

The function f(x, y) = sin(x)
x

+ y where x 6= 0, f(x, y) = y where x = 0 is
not continuous at (0, 1). However, we can modify this example to produce a
continuous functions.

Use of continuity: Extreme Value Theorem, page 912.

Consider f(x) = 1
x2 where x 6= 0 and f(0) = 5. On the interval [−1, 1] there

is an absolute minimum but no absolute maximum.

Clairaut’s Theorem p. 613: continuity of first partials and mixed second
partials on an open set U guarantees equality of mixed partials on U . (Define
open set.)
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