Math 223 Week 2 Lectures: Sections 10.9, 11.1, 11.2

Section 10.9: Motion in Space: Velocity and Acceleration

Position vector: $r(t)$
Velocity vector: $v(t)=r^{\prime}(t)$
Acceleration vector: $a(t)=v^{\prime}(t)=r^{\prime \prime}(t)$
Examples: $r(t)=(\cos t, \sin t, 0), r(t)=\left(\cos t, \sin t, \frac{t}{\pi}\right), r(t)=\left(\cos t, \sin t, \frac{t^{2}}{\pi^{2}}\right)$.
Expressing velocity vector and acceleration vector in terms of T and N :

$$
\begin{gathered}
v(t)=r^{\prime}(t)=\left\|r^{\prime}(t)\right\| T(t)=\frac{d s}{d t} T(t) \\
a(t)=v^{\prime}(t)=\frac{d^{2} s}{d t^{2}} T+\frac{d s}{d t} T^{\prime}(t)=\frac{d^{2} s}{d t^{2}} T+\frac{d s}{d t}\left\|T^{\prime}(t)\right\| N(t)= \\
\frac{d^{2} s}{d t^{2}} T+\frac{d s}{d t} T^{\prime}(t)=\frac{d^{2} s}{d t^{2}} T+\left(\frac{d s}{d t}\right)^{2} \kappa N(t) .
\end{gathered}
$$

We write $a_{T}=\frac{d^{2} s}{d t^{2}}$ and $a_{N}=\left(\frac{d s}{d t}\right)^{2} \kappa$.
Computing a_{T} efficiently:

$$
\begin{aligned}
& a_{T} T+a_{N} N=a \\
& a_{T}(T \cdot T)=a \cdot T \\
& a_{T}=\frac{r^{\prime \prime}(t) \cdot r^{\prime}(t)}{\frac{d s}{d t}} .
\end{aligned}
$$

Computing a_{N} efficiently:

$$
\begin{gathered}
a_{T} T+a_{N} N=a \\
a_{N}(N \times T)=a \times T \\
a_{N}=\|a \times T\| \\
a_{N}=\frac{\left\|r^{\prime \prime}(t) \times r^{\prime}(t)\right\|}{\frac{d s}{d t}}
\end{gathered}
$$

When dealing with projectiles, balls, bullets, guns, etc, pretend that motion occurs in the $x y$ plane with acceleration $-g j$ where g is 9.8 meters per second squared or 16.0 feet per second squared. Now do problems 19 and 21, page 587.

If a particle is moving in 3-space such a way that its acceleration is always toward the origin with magnitude inversely proportional to its distance from the origin, then it must be moving in an elliptical orbit in a plane through the origin. To see this, write $r^{\prime \prime}(t)=-\frac{\alpha}{\|r(t)\|^{3}} r(t)$. Then $r^{\prime \prime}(t)$ is parallel to $r(t)$, so $r(t) \times r^{\prime \prime}(t)=0$. Therefore $\frac{d}{d t}\left(r(t) \times r^{\prime}(t)\right)=0$, therefore $r(t) \times r^{\prime}(t)=h$ for some constant vector h. So h is at all times perpendicular to $r(t)$ and $r(t)$ is in the plane normal to h. We will now choose a coordinate system so that $r(t)=|r(t)|(\cos \theta(t), \sin \theta(t), 0)$ and $r^{\prime \prime}(t)=-\frac{\alpha}{|r(t)|^{2}}(\cos \theta(t), \sin \theta(t), 0)$ and $h=\left(0,0,|r(t)|^{2} \theta^{\prime}(t)\right)$.
We have

$$
\begin{gathered}
\left(r^{\prime} \times h\right)^{\prime}=r^{\prime \prime} \times h+r^{\prime} \times h^{\prime}=r^{\prime \prime} \times h=\left(-\alpha \sin \theta \theta^{\prime}, \alpha \cos \theta \theta^{\prime}, 0\right)= \\
(\alpha \cos \theta, \alpha \sin \theta, 0)^{\prime},
\end{gathered}
$$

therefore

$$
r^{\prime} \times h=(\alpha \cos \theta, \alpha \sin \theta, 0)+C=\frac{\alpha}{|r(t)|} r+C .
$$

Hence

$$
r \cdot\left(r^{\prime} \times h\right)=\frac{\alpha}{|r|}|r|^{2}+C \cdot r=\alpha|r|+c|r| \cos \psi
$$

By properties of the dot and cross product,

$$
r \cdot\left(r^{\prime} \times h\right)=\left(r \times r^{\prime}\right) \cdot h=h \cdot h=|h|^{2} .
$$

Therefore

$$
|h|^{2}=\alpha|r|+c|r| \cos \psi .
$$

This is the polar equation of an ellipse (one focus at origin, other on axis perpendicular to C).

Moreover, equal areas are swept out in equal time periods. Reason: Let $A(t)=$ area swept out after t units of time. Then $A(t+h)-A(t)$ is approximately equal to $\frac{1}{2}\|r(t) \times r(t+h)\|$. Hence

$$
\frac{A(t+h)-A(t)}{h} \approx \frac{1}{2}\left\|r(t) \times \frac{r(t+h)-r(t)}{h}\right\|
$$

Let $h \rightarrow 0$. Obtain

$$
A^{\prime}(t)=\frac{1}{2}\left\|r(t) \times r^{\prime}(t)\right\|=\frac{1}{2}\|h\|,
$$

which is a constant rate.

Section 11.1: Functions of Several Variables

Function notation, domain, range
The graph of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is the set of all points (x, y, z) where $z=f(x, y)$.
Graphing technique for $z=f(x, y)$: project graph at height c onto $x y$ plane, and label the level curve by c. Then lift level curves up by c.
Example: $f(x, y)=x^{2}+4 y^{2}+10$
Perhaps x and y have units of feet and z has units of degrees, and $f(x, y)$ measures temperature at location (x, y)
Level curves are ellipses
Graph is Elliptic Paraboloid
Level surfaces: same idea for higher dimensions.

Section 11.2: Limits and Continuity

Objective: define $\lim _{x \rightarrow x_{0}} f(x)=L$. Intuitively, the distance between $f(x)$ and L, which is measured as $|f(x)-L|$, approaches 0 as the distance between x and x_{0}, measured as $\left\|x-x_{0}\right\|$, approaches zero.
Note: $f(x)$ does not need to be defined at x_{0}. Example: $f(x, y)=\frac{\sin (x)}{x}+y$. Limit as (x, y) approaches $(0,5)$ is 5 .

Example: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ doesn't exist. Consider letting (x, y) approach the origin in the direction $(1,1)$: limit is $\frac{1}{2}$. But in the direction $(1,2): \frac{2}{5}$. No consistent limit. So at the very least we want the same result coming in along any line.
Example: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$ doesn't exist. Along direction $(1, m)$ where $m \neq$ 0 : approaches 0 . Along the x-axis: approaches 0 . But along the path $\left(t, t^{2}\right)$: approaches $\frac{2}{5}$.

Definition: the limit is L if we are able to say the following: for each $\epsilon>0$ we can find $\delta>0$ such that whenever x is within δ units of $x_{0}, f(x)$ is within ϵ units of L.

Example: $f(x, y)=2 x+2 y+1$. Limit as (x, y) approaches $(0,0)$ is 1 . Proof: Let $\epsilon=.1$ be given. If $x^{2}+y^{2}<\delta^{2}$ then $-\delta<x<\delta$ and $-\delta<y<\delta$, therefore $-4 \delta<2 x+2 y<4 \delta$, so we should pick $\delta=\frac{1}{4}=.025$. More generally, we should pick $\delta=\frac{\epsilon}{4}$.

Function continuous at a point: limit can be evaluated by direct substitution.
Continuity on a set: continuous at all points of set.
Continuity properties: projections, sums, products, compositions are all continuous.

Rational polynomial functions are continuous where denominator is not zero.
The function $f(x, y)=\frac{\sin (x)}{x}+y$ where $x \neq 0, f(x, y)=y$ where $x=0$ is not continuous at $(0,1)$. However, we can modify this example to produce a continuous functions.

Use of continuity: Extreme Value Theorem, page 912.
Consider $f(x)=\frac{1}{x^{2}}$ where $x \neq 0$ and $f(0)=5$. On the interval $[-1,1]$ there is an absolute minimum but no absolute maximum.

Clairaut's Theorem p. 613: continuity of first partials and mixed second partials on an open set U guarantees equality of mixed partials on U. (Define open set.)

