Math 223 Week 1 Lectures: Sections 10.6, 10.7, 10.8

Section 10.6: Cylinders and Quadric Surfaces

Graph of an equation in 2 dimensions: plot of all (x, y) that satisfy equation. Example: $x^{2}+y^{2}=25$.
Graph of an equation in 3 dimensions: plot of all (x, y, z) that satisfy equation. Example: $x^{2}+y^{2}+z^{2}=169$ - one coordinate is $(3,4,5)$.

When you graph an equation in 2 variables and 3 dimensions, you get a cylinder. Examples: $x^{2}+y^{2}=25, z=y^{2}, x-2 z=0$.

Quadric surfaces are plots of a general quadratic equation - page 554.
How to plot: superimpose traces (equation where one variable is fixed at particular number). For example, $y^{2}=x^{2}+z^{2}$.

Classification: Table 1, page 557.
Example: $4 x^{2}+y^{2}+4 z^{2}-4 y-24 z+36=0-$ requires completing the square, consulting the table, recognizing shifts.

Section 10.7: Vector Functions and Space Curves

A vector function is $r(t)=(f(t), g(t), h(t))=f(t) i+g(t) j+h(t) k . t$ can be viewed as time, $(f(t), g(t), h(t))$ as position at time t.

Example: Line through $(1,2,3)$ and $(10,9,8)$.
Example: Intersection of $x^{2}+y^{2}=1$ and $y+z=2$. Several ways to parameterize: $t=$ angle with x-axis, $t=z$-coordinate.

Derivative of a vector function: differentiate the components.
Geometric interpretation: $r^{\prime}(t)=$ direction of motion at time t. Determines tangent line direction.

Tangent line equation at time $t_{0}: L(t)=r\left(t_{0}\right)+t r^{\prime}\left(t_{0}\right)$.
Work out an example.
Differentiation rules are given on page 566.
The definite integral is defined on page 567 .

Section 10.8: Arc Length and Curvature

The arclength formula is given on page 570. Idea of derivation: we learn that $s=\int v$ in calculus I. What is v in three dimensions?

$$
v=\lim _{h \rightarrow 0} \frac{\|r(t+h)-r(t)\|}{h}=\lim _{h \rightarrow 0}\left\|\frac{\| r(t+h)-r(t)}{h}\right\|\|=\| r^{\prime}(t) \| .
$$

Arclength as a function of time: formula 6, page 571.
Position as a function of arclength: solve for t in terms of s, then define $R(s)=r(t)=\cdots$. Example: $r(t)=\left(t^{3}, t^{3}, t^{3}\right), R(s)=\left(\frac{s}{\sqrt{3}}, \frac{s}{\sqrt{3}}, \frac{s}{\sqrt{3}}\right)$.
Unit tangent vector: tangent vector scaled down to length 1 . Regard as a length one gauge in your airplane which points in the direction of travel.

Curvature: if the airplane does a sharp turn, you would expect to see the unit tangent vector change. The more it changes, the sharper the turn. Mathematical definition is curvature, κ. Formula:

$$
\kappa=\left\|\frac{d T}{d s}\right\|=\frac{\left\|T^{\prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|}
$$

An interpretation in the plane: Gauge direction is determined by angle.

$$
\kappa=\left\|\frac{d T}{d s}\right\|=\lim _{h \rightarrow 0} \frac{\|T(s+h)-T(s)\|}{h}=
$$

$\lim _{h \rightarrow 0}\left|\frac{\theta(s+h)-\theta(s)}{h}\right|=$ rate of change of |angle \mid with respect to arclength.

Alternative formulas: Theorem 10, Theorem 11. Work out some examples.
Normal and Binormal vectors: see top of page 575 for formulas. $N(t)$ is perpendicular to the direction of motion and has length 1 . The binormal is perpendicular to the plane containing $T(t)$ and $N(t)$, i.e. $r(t)$ and $r^{\prime}(t)$, and has length 1. This plane is called the osculating plane. The osculating circle is illustrated on page 576 and has equation

$$
\operatorname{osc}(t)=r\left(t_{0}\right)+\frac{1}{\kappa\left(t_{0}\right)} N\left(t_{0}\right)+\frac{\cos (t)}{\kappa\left(t_{0}\right)} T\left(t_{0}\right)+\frac{\sin (t)}{\kappa\left(t_{0}\right)} N\left(t_{0}\right) .
$$

Work out some examples.

