Antiderivatives

Definition.
Examples.
Distance is antiderivative of velocity, velocity is antiderivative of acceleration. Motion problems.

Areas and Distances

Area below graph of $y=f(x)$ is approximated by Riemann sums and can be defined as the limit of these expressions.
Example: a limit argument shows that the area below $y=x^{2}$ over $[0,1]$ is $\frac{1}{3}$.
Application: $f(b)-f(a)$ can be viewed as area below $y=f^{\prime}(x)$ between $x=a$ and $x=b$. Reason: using the mean value theorem applied to the partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$, we obtain

$$
\begin{gathered}
f(b)-f(a)=f\left(x_{1}\right)-f\left(x_{0}\right)+f\left(x_{2}\right)-f\left(x_{1}\right)+\cdots= \\
f^{\prime}\left(c_{1}\right)\left(x_{1}-x_{0}\right)+f^{\prime}\left(c_{2}\right)\left(x_{2}-x_{1}\right)+\cdots=
\end{gathered}
$$

Riemann sum!
Given that every partition of $[a, b]$ produces $f(b)-f(a)$ as a possible Riemann sum, the limit of these sums has to be $f(b)-f(a)$.
Application: Net distance travelled can be viewed as area below the velocity curve.

Application: Let $f(x)=\frac{1}{3} x^{3}$. Then $\frac{1}{3}=f(1)-f(0)$ is the area below $y=f^{\prime}(x)=x^{2}$ between $x=0$ and $x=1$.

