Selected Solutions to HW 9:
[1.5] $\tau\left(\sum_{i=0}^{n} a_{i} u^{i}\right)=\sum_{i=0}^{n} a_{i}(\tau(u))^{i}$, so τ is determined by $\tau(u)$.
[1.20] We are dealing with the extension $\mathbb{Q} \subseteq \mathbb{Q}\left[u_{1}, u_{2}\right]$ where $u_{1}=2^{1 / 4}$ and $u_{2}=2^{1 / 4} i$. So $\operatorname{irr}\left(u_{1}, \mathbb{Q}\right)=\operatorname{irr}\left(2^{1 / 4}, \mathbb{Q}\right)=x^{4}-2$ by Eisenstein's criterion $(p=$ $2)$ and $\operatorname{irr}\left(u_{2}, \mathbb{Q}\left[u_{1}\right]\right)=\operatorname{irr}\left(2^{1 / 4} i, \mathbb{Q}\left[2^{1 / 4}\right]\right)=x^{2}+\left(2^{1 / 4}\right)^{2}$ since $2^{1 / 4} i \notin \mathbb{Q}\left[2^{1 / 4}\right]$. The roots of $x^{4}-2$ are all present in the extension field, so $v_{1}=2^{1 / 4} i$ is a valid choice. Given this choice we have $\left(x^{2}+\left(2^{1 / 4}\right)^{2}\right)^{\prime}=x^{2}+\left(2^{1 / 4} i\right)^{2}=$ $x^{2}-2^{1 / 2}$, which has both roots present in the extension field. So $v_{2}=2^{1 / 4}$ is a valid choice. Given these choices for v_{1} and v_{2}, the Galois Group Algorithm constructs the automorphism $a\left(2^{1 / 4}, 2^{1 / 4} i\right) \mapsto a\left(2^{1 / 4} i, 2^{1 / 4}\right)$. In particular, $2^{1 / 4} \mapsto 2^{1 / 4} i$ and $2^{1 / 4} i \mapsto 2^{1 / 4}$.
[2.6] Since f and g are the minimal polynomials of u and v over K respectively, $[K[u]: K]=n$ and $[K[v]: K]=m$. Since each of the latter numbers are divisors of $[K[u, v]: K]$ by the Tower Theorem, and since m and n are coprime, $m n \mid[K[u, v]: K]$. Therefore $[K[u, v]: K] \geq m n$. On the other hand, $[K[u, v]: K]=[K[u][v]: K[u]][K[u]: K]$, and since $\operatorname{irr}(v, K[u]) \mid g(x)$ and $\operatorname{irr}(u, K)=f(x),[K[u, v]: K] \leq m n$. So in fact $[K[u, v]: K]=m n$. A bit of algebra yields $[K[u][v]: K[u]]=m$, which implies $g(x)=\operatorname{irr}(v, K[u])$.

