Selected Solutions to HW 5:
4.2: Let $r \neq 0$ in R. Then the sequence r, r^{2}, r^{3}, \ldots must be finite because R is finite, and does not contain 0 since R is an integral domain. So at some point $r^{i}=r^{j}$ where $1 \leq i<j$. Hence $r^{i}\left(1-r^{j-i}\right)=0$, hence $1-r^{j-i}=0$, hence $r^{j-i}=1$, hence $r\left(r^{j-i-1}\right)=1$. In other words, r^{-1} exists.
4.20: The $\operatorname{map} \phi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\phi(a, b)=a$ is a ring epimorphism with kernel $0 \times \mathbb{Z}$. Since \mathbb{Z} is an integral domain which is not a field, $0 \times \mathbb{Z}$ is a prime ideal which is not maximal.
4.24: (c) $I+\frac{2 a}{2 b+1}=I+\frac{0}{1}$ because $\frac{2 a}{2 b+1}-\frac{0}{1}=\frac{2 a}{2 b+1} \in I . I+\frac{2 a+1}{2 b+1}=I+\frac{1}{1}$ because $\frac{2 a+1}{2 b+1}-\frac{1}{1}=\frac{2 a-2 b}{2 b+1} \in I$. This exhausts all possibility, so the two cosets boil down to $I+0$ and $I+1$. These must be unequal because $1 \notin I$ $\left(1 \in I \Longrightarrow 1=\frac{2 a}{2 b+1}\right.$, a contradiction). (d) $S / I \cong \mathbb{Z}_{2}$, a field, therefore I is a maximal ideal of S.
4.26: (b) If we are to assume that $\phi(k)=k$ for all $k \in \mathbb{Z}$, then $\phi(\alpha)^{2}=$ $\phi(\alpha) \phi(\alpha)=\phi\left(\alpha^{2}\right)=\phi(a)=a$. This forces $\phi(\alpha) \in\{\alpha,-\alpha\}$, which forces
$\phi(a+b \alpha)=\phi(a)+\phi(b \alpha)=\phi(a)+\phi(b) \phi(\alpha)=a+b \phi(\alpha) \in\{a+b \alpha, a-b \alpha\}$.
So there are two automorphisms, the identity automorphism and the conjugation automorphism.

