Homework 9 due Thursday, November 13:
Pages $87-88$, problems 1.5, 1.11, 1.13, 1.18, 1.20 and pages $95-96$, problems 2.6, 2.7

Hints:

1.5: Given $f_{0}+f_{1} u+\cdots+f_{n} u^{n} \in K[u]$ where each $f_{i} \in K$ and given $\tau \in \operatorname{Gal}_{K}(K[u])$, compute $\tau\left(f_{0}+f_{1} u+\cdots+f_{n} u^{n}\right)$.
1.11: Refer back to exercise [1.5]. Given $\tau \in \operatorname{Gal}_{\mathbb{Q}}(\sqrt[3]{5})$, show that $\tau(\sqrt[3]{5})^{3}=$ 5. Given that $\tau(\sqrt[3]{5}) \in \mathbb{Q}[\sqrt[3]{5}]$, what can it be equal to?
1.13: Instead of following the method of Example [1.25.2], use the Galois Group Algorithm presented in class (see class website for a statement of the algorithm).
1.18: A primitive $p^{\text {th }}$ root of unity is any complex number ξ that satisfies $\xi^{p}=1$ and $\xi^{r} \neq 1$ for $0 \leq r<p$. Note also that $(x-1) f(x)=x^{p}-1$. Use the Galois Group Algorithm and exercise [1.5] to compute $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\xi])$.
1.20: Use the Galois Group Algorithm.
2.6: Consider the towers $F \subseteq F[u] \subseteq F[u, v]$ and $F \subseteq F[v] \subseteq F[u, v]$ and use the Tower Theorem.
2.7: (a) First establish $[F: \mathbb{Q}]=p(p-1)$ using exercise [2.6], then use this information to find the irreducible polynomial of ξ over \mathbb{Q} and ω over $\mathbb{Q}[\xi]$. (b) The conjugates of an element $u \in E$ in a field extension $F \subseteq E$ are the roots of $\operatorname{irr}(u, F)$ that belong to E. (c) Construct all the elements in $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}[\xi, \omega])$ using the Galois Group Algorithm. Once you have constructed it, you can determine how many group elements there are.

