Homework 8 due Thursday, November 6:
Pages $87-88$, problems 1.7, 1.8, 1.9, 1.16, 1.19 and pages $95-96$, problems 2.2, 2.5.

Note: $F(\alpha)$ is notation for the field

$$
F[\alpha]=\left\{f_{0}+f_{1} \alpha+\cdots+f_{n} \alpha^{n}: n \geq 0, f_{0}, \ldots, f_{n} \in F\right\}
$$

assuming that α is algebraic over F. More generally, $F\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ is notation for the field

$$
F\left[u_{1}\right]\left[u_{2}\right] \cdots\left[u_{n}\right]=\left\{\sum_{i_{1}, i_{2}, \ldots, i_{n}} f_{i_{1}, i_{2}, \ldots, i_{n}} u_{1}^{i_{1}} u_{2}^{i_{1}} \cdots u_{n}^{i_{n}}: f_{i_{1}, i_{2}, \ldots, i_{n}} \in F\right\},
$$

assuming that u_{1} is algebraic over F, u_{2} is algebraic over $F\left[u_{1}\right], u_{3}$ is algebraic over $F\left[u_{1}\right]\left[u_{2}\right]$, etc.

Hints:

1.7: In each case you must find a monic polynomial $p(x)$ satisfied by u with coefficients in the given field F and prove that $p(x)$ is irreducible in $F[x]$ using the usual techniques.
1.8: Use the Tower Theorem applied to the field extension $\mathbb{Q} \subseteq \mathbb{Q}[\sqrt{2}] \subseteq$ $\mathbb{Q}[\sqrt{2}][\sqrt{3}]$.
1.9: In order to prove that $F\left[u_{1}, u_{2}, \ldots, u_{j}\right]=F\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ it suffices to prove that $u_{i} \in F\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ for $1 \leq i \leq j$ and that $v_{i} \in F\left[u_{1}, u_{2}, \ldots, u_{j}\right]$ for $1 \leq i \leq k$. You can sometimes prove that $F\left[u_{1}, u_{2}, \ldots, u_{j}\right] \neq F\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ by showing that $\left[F\left[u_{1}, u_{2}, \ldots, u_{j}\right]: F\right] \neq\left[F\left[v_{1}, v_{2}, \ldots, v_{k}\right]: F\right]$, but equality of dimensions does not imply equality (or even isomorphism) of fields.
1.16: (a) is a consequence of Corollary [1.9], p. 78, which we proved in class. (b) Play with the fact that $\omega^{3}=2$, or alternatively with the fact that $\mathbb{Q}[\omega] \cong \mathbb{Q}[x] /\left(x^{3}-2\right)$.
1.19: See remarks for 1.16.
2.2: See remarks for 1.7.
2.5: This problem uses the same techniques that I used Tuesday, 10/28, to prove that $\left[\mathbb{Q}\left[2^{1 / 2}, 5^{1 / 3}\right]: \mathbb{Q}\right]=6$.

