Homework 7 due Thursday, October 23:
Pages 71-72, problems 5.6, 5.8, 5.9, 5.10, 5.11, 5.13, 5.17
Hints:
5.6: Plug in, use long division.
5.8. Use Eisenstein's criterion and the material developed in class.
5.9. F_{2} is the same as \mathbb{Z}_{2}. (c) If a fifth degree polynomial is reducible, then it has a factor of degree ≤ 2. (d) The elements of $F_{2}[x] /(f(x))$ are cosets of the form $(f(x))+g(x)$ where $g(x) \in F_{2}[x]$. Using long division, $g(x)=$ $q(x) f(x)+r(x)$ where $\operatorname{deg} r(x)<5$. Explain why this implies $(f(x))+g(x)=$ $(f)+r(x)$. Hence every element in $F_{2}[x] /(f(x))$ is of the form $(f)+a+b x+$ $c x^{2}+d x^{3}+e x^{4}$ where $a, b, c, d, e \in F_{2}$. Show that the representation is unique, i.e. $(f)+a+b x+c x^{2}+d x^{3}+e x^{4}=(f)+A+B x+C x^{2}+D x^{3}+E x^{4}$ implies $a=A, b=B, c=C, d=D, e=E$, then count the elements of the quotient ring using this representation.
5.13. (a) is reducible!
17. By Corollary [5.28], $1+x+\cdots+x^{n-1}$ is irreducible if n is prime. You must show that if $n=a b$ where $a>1$ and $b>1$ then $1+x+\cdots+x^{n-1}$ can be factored non-trivially.

