Homework 4 due Thursday, October 2.
Page 33, problems 2.20, 2.23. Page 42, problems 3.1, 3.2, 3.6, 3.8, 3.9, 3.11.
Remarks:
2.20. The class equation is $|G|=|Z(G)|+\sum_{i=k+1}^{m} \frac{|G|}{\left|G_{x_{i}}\right|}$ where the distinct conjugacy classes of G are $\left[x_{1}\right], \ldots,\left[x_{m}\right], x_{1}, \ldots, x_{k} \in Z(G)$, and $G_{x}=\{g \in$ $\left.G: g x g^{-1}=x\right\}$. So you must compute the conjugacy class of every element in D_{4}, choose x_{1}, \ldots, x_{m} (one from each class), then compute each $G_{x_{i}}$, then check that the class equation holds for D_{4}.
2.23. You are given that p does not divide $|G| /|P|$ and must show that p does not divide $|N| /|N \cap P|$. You will find Corollary [2.18], p. 23, useful.
3.1. By the Fundamental Theorem of Finite Abelian Groups, each such group is isomorphic to a direct product of cyclic groups of the form $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots$. You should give a reason why the abelian groups of order 72 you produce are non-isomorphic. See Example 1, p. 38.
3.2. Consider the product of two groups, one of them non-abelian. Describe the group operation carefully.
3.6. Use contradiction.
3.8. Prove that hint given in the textbook is correct: each subgroup is normal in the next, and the quotient groups are abelian.
3.9. Find an explicit solvable series for D_{n} for an arbitrary n and prove that it has the desired properties.

