
Exam 4 Solutions Math 641 Fall 2014

Let K = Q, u =
√

4 +
√

8, τ = K[u].

(a) Compute [τ : K], proving carefully that your irr(u,K) is actually irre-
ducible.

(b) Prove that τ is a splitting field of irr(u,K). You should be able to express
each root in terms of u.

(c) By a homework exercise, each τ ∈ GalK(F ) is determined by τ(u). Com-
pute τi◦τj(u) for each pair τi, τj ∈ GalK(F ), using the information in (b). Use
this information to construct the group multiplication table for GalK(F ) and
to find an isomorphism between GalK(F ) and one of the standard groups we
have studied in this course. This will be useful for finding all the subgroups
of GalK(F ) in Part (d).

(d) Compute H ′ for each subgroup H of GalK(F ). Arrange the subgroups
and the intermediate fields into two Hasse diagrams. See pp. 132–133 for an
example of Hasse diagrams and the process of finding fixed fields. There is
also a Mathematica notebook on the course webpage which has examples of
fixed fields.

(e) The field extension K ⊆ F meets the hypotheses of the Fundamental
Theorem of Galois Theory since it is a splitting field of characteristic zero.
This theorem guarantees that when H is a normal subgroup of GalK(F ), H ′

is normal over K, which implies that H ′ is a splitting field of some polynomial
fH(x) in K[x]. Given each normal subgroup H, find a suitable polynomial
fH(x).

Solutions:

(a)
u2 = 4 +

√
8

(u2 − 4)2 = 8

u4 − 8u2 + 8 = 0

x4 − 8x2 + 8 is irreducible in Q[x]: The rational roots of x4 − 8x2 + 8 belong
to {±1,±2,±4,±8}, none of which are actual roots. Hence x4 − 8x2 + 8
has no linear factors in Q[x]. If x4 − 8x2 + 8 has a quadratic factor in Q[x]
then x4 − 8x + 8 = (x2 + ax + bε)(x2 + cx + dε) where |ε| = 1, a, c ∈ Z,
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(b, d) ∈ {(1, 8), (2, 4)}. Comparing coefficients of x3, x2, and x, a + c = 0,
ac + bε + dε = −8, bcε + adε = 0. Hence bc + ad = 0, c(b − d) = 0, c = 0,
ε = −1, b + d = 8, a contradiction. So x4 − 8x2 + 8 is irreducible in Q[x].
Hence irr(u,Q) = x4 − 8x2 + 8.

Another solution: If x4 − 8x2 + 8 is reducible in Q[x] then it is reducible
in Z[x], hence in Z3[x], hence it must be possible to divide x4 − 8x2 + 8 by
a monic polynomial of degree 1 or 2 in Z3[x] and obtain a remainder of 0.
There are 3 monic polynomials of degree 1 in Z3[x] and 9 monic polynomials
of degree 2 in Z3[x], and dividing x4−8x2+8 by each of these 12 polynomials
in Z3[x] leaves a non-zero remainder in every case. Contradiction. Therefore
x4 − 8x2 + 8 is irreducible in Q[x].

(b) The roots of x4 − 8x2 + 8 in C are

(u1, u2, u3, u4) = (

√
4 +
√

8,−
√

4 +
√

8,

√
4−
√

8,−
√

4−
√

8).

We must show that each root belongs to Q[u] where u =
√

4 +
√

8. We have
u1 = u and u2 = −u. We also have

1

u
=

1√
4 +
√

8
=

√
4−
√

8√
8

=
u3

u2 − 4
,

hence u3 = u2−4
u

and u4 = −u2−4
u

. Therefore u1, u2, u3, u4 ∈ Q[u].

(c) By the Galois Group Algorithm, v1 can be any root of x4 − 8x2 + 8 in
Q[u]. This yields GalK(F ) = {τ1, τ2, τ3, τ4} where

τ1(u) =

√
4 +
√

8 = u,

τ2(u) = −
√

4 +
√

8 = −u,

τ3(u) =

√
4−
√

8 =
u2 − 4

u
,

τ4(u) = −
√

4−
√

8 = −u
2 − 4

u
.

Compositions: we have, for example, τ3(τ4(u)) = τ3(−u2−4
u

) = − τ3(u)2−4
τ3(u)

=

− −
√
8√

4−
√
8

=
√

4 +
√

8 = u, which implies τ3 ◦ τ4 = τ1. Below we work
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out the multiplication tables for both GalK(F ) (under function composition)
and Z4 (under addition mod 4). We can see that GalK(F ) ∼= Z4 via the
isomorphism φ defined by φ(τ1) = 0, φ(τ2) = 2, φ(τ3) = 1, φ(τ4) = 3. We
also have GalK(F ) = 〈τ3〉.

◦ τ1 τ2 τ3 τ4

τ1 τ1 τ2 τ3 τ4
τ2 τ2 τ1 τ4 τ3
τ3 τ3 τ4 τ2 τ1
τ4 τ4 τ3 τ1 τ2

+ 0 2 1 3

0 0 2 1 3
2 2 0 3 1
1 1 3 2 0
3 3 1 0 2

(d) The subgroups of Z4 are

H1 = 〈0〉 = {0},

H2 = 〈2〉 = {0, 2},

H3 = 〈1〉 = {0, 1, 2, 3}.

Hence the subgroups of GalK(F ) are

H1 = 〈τ1〉 = {τ1},

H2 = 〈τ2〉 = {τ1, τ2},

H3 = 〈τ3〉 = {τ1, τ3, τ2, τ4}.

We have
H ′1 = {x ∈ F : τ1(x) = x} = F = Q[u]

H ′2 = {x ∈ F : τ1(x) = τ2(x) = x} = to be determined,

H ′3 = {x ∈ F : τ1(x) = τ3(x) = τ2(x) = τ4(x) = x} =

(GalK(F ))′ = (K ′)′ = K ′′ = K = Q.

A basis for F over Q is {1, u, u2, u3} and the typical element in F is a+ bu+
cu2 + du3 where a, b, c, d ∈ Q. This element belongs to H ′2 iff it is fixed by
τ2. In other words,

a+ bu+ cu2 + du3 ∈ H ′2 ⇔

τ2(a+ bu+ cu2 + du3) = a+ bu+ cu2 + du3 ⇔

a− bu+ cu2 − du3 = a+ bu+ cu2 + du3 ⇔
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b = d = 0.

Hence

H ′2 = {a+ cu2 : a, c ∈ Q} = Q[u2] = Q[4 +
√

8] = Q[
√

8].

So the Hasse diagrams are

〈τ1〉 ⊆ 〈τ2〉 ⊆ 〈τ3〉

and

Q[

√
4 +
√

8] ⊇ Q[
√

8] ⊇ Q.

(d) Since GalK(F ) is abelian, every subgroup is normal. H ′1 = Q[
√

4 +
√

8]
is a splitting field of x4 − 8x2 + 8, H ′2 = Q[

√
8] is a splitting field of x2 − 8,

and H ′3 = Q is a splitting field of x− 1.
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