Exam 4 Solutions Math 641 Fall 2014

Let $K=\mathbb{Q}, u=\sqrt{4+\sqrt{8}}, \tau=K[u]$.
(a) Compute $[\tau: K]$, proving carefully that your $\operatorname{irr}(u, K)$ is actually irreducible.
(b) Prove that τ is a splitting field of $\operatorname{irr}(u, K)$. You should be able to express each root in terms of u.
(c) By a homework exercise, each $\tau \in \operatorname{Gal}_{K}(F)$ is determined by $\tau(u)$. Compute $\tau_{i} \circ \tau_{j}(u)$ for each pair $\tau_{i}, \tau_{j} \in \operatorname{Gal}_{K}(F)$, using the information in (b). Use this information to construct the group multiplication table for $\operatorname{Gal}_{K}(F)$ and to find an isomorphism between $\operatorname{Gal}_{K}(F)$ and one of the standard groups we have studied in this course. This will be useful for finding all the subgroups of $\operatorname{Gal}_{K}(F)$ in Part (d).
(d) Compute H^{\prime} for each subgroup H of $\operatorname{Gal}_{K}(F)$. Arrange the subgroups and the intermediate fields into two Hasse diagrams. See pp. 132-133 for an example of Hasse diagrams and the process of finding fixed fields. There is also a Mathematica notebook on the course webpage which has examples of fixed fields.
(e) The field extension $K \subseteq F$ meets the hypotheses of the Fundamental Theorem of Galois Theory since it is a splitting field of characteristic zero. This theorem guarantees that when H is a normal subgroup of $\operatorname{Gal}_{K}(F), H^{\prime}$ is normal over K, which implies that H^{\prime} is a splitting field of some polynomial $f_{H}(x)$ in $K[x]$. Given each normal subgroup H, find a suitable polynomial $f_{H}(x)$.

Solutions:

(a)

$$
\begin{gathered}
u^{2}=4+\sqrt{8} \\
\left(u^{2}-4\right)^{2}=8 \\
u^{4}-8 u^{2}+8=0
\end{gathered}
$$

$x^{4}-8 x^{2}+8$ is irreducible in $\mathbb{Q}[x]$: The rational roots of $x^{4}-8 x^{2}+8$ belong to $\{ \pm 1, \pm 2, \pm 4, \pm 8\}$, none of which are actual roots. Hence $x^{4}-8 x^{2}+8$ has no linear factors in $\mathbb{Q}[x]$. If $x^{4}-8 x^{2}+8$ has a quadratic factor in $\mathbb{Q}[x]$ then $x^{4}-8 x+8=\left(x^{2}+a x+b \epsilon\right)\left(x^{2}+c x+d \epsilon\right)$ where $|\epsilon|=1, a, c \in \mathbb{Z}$,
$(b, d) \in\{(1,8),(2,4)\}$. Comparing coefficients of x^{3}, x^{2}, and $x, a+c=0$, $a c+b \epsilon+d \epsilon=-8, b c \epsilon+a d \epsilon=0$. Hence $b c+a d=0, c(b-d)=0, c=0$, $\epsilon=-1, b+d=8$, a contradiction. So $x^{4}-8 x^{2}+8$ is irreducible in $\mathbb{Q}[x]$. Hence $\operatorname{irr}(u, \mathbb{Q})=x^{4}-8 x^{2}+8$.
Another solution: If $x^{4}-8 x^{2}+8$ is reducible in $\mathbb{Q}[x]$ then it is reducible in $\mathbb{Z}[x]$, hence in $\mathbb{Z}_{3}[x]$, hence it must be possible to divide $x^{4}-8 x^{2}+8$ by a monic polynomial of degree 1 or 2 in $\mathbb{Z}_{3}[x]$ and obtain a remainder of 0 . There are 3 monic polynomials of degree 1 in $\mathbb{Z}_{3}[x]$ and 9 monic polynomials of degree 2 in $\mathbb{Z}_{3}[x]$, and dividing $x^{4}-8 x^{2}+8$ by each of these 12 polynomials in $\mathbb{Z}_{3}[x]$ leaves a non-zero remainder in every case. Contradiction. Therefore $x^{4}-8 x^{2}+8$ is irreducible in $\mathbb{Q}[x]$.
(b) The roots of $x^{4}-8 x^{2}+8$ in \mathbb{C} are

$$
\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=(\sqrt{4+\sqrt{8}},-\sqrt{4+\sqrt{8}}, \sqrt{4-\sqrt{8}},-\sqrt{4-\sqrt{8}})
$$

We must show that each root belongs to $\mathbb{Q}[u]$ where $u=\sqrt{4+\sqrt{8}}$. We have $u_{1}=u$ and $u_{2}=-u$. We also have

$$
\frac{1}{u}=\frac{1}{\sqrt{4+\sqrt{8}}}=\frac{\sqrt{4-\sqrt{8}}}{\sqrt{8}}=\frac{u_{3}}{u^{2}-4}
$$

hence $u_{3}=\frac{u^{2}-4}{u}$ and $u_{4}=-\frac{u^{2}-4}{u}$. Therefore $u_{1}, u_{2}, u_{3}, u_{4} \in \mathbb{Q}[u]$.
(c) By the Galois Group Algorithm, v_{1} can be any root of $x^{4}-8 x^{2}+8$ in $\mathbb{Q}[u]$. This yields $\operatorname{Gal}_{K}(F)=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\}$ where

$$
\begin{gathered}
\tau_{1}(u)=\sqrt{4+\sqrt{8}}=u, \\
\tau_{2}(u)=-\sqrt{4+\sqrt{8}}=-u, \\
\tau_{3}(u)=\sqrt{4-\sqrt{8}}=\frac{u^{2}-4}{u}, \\
\tau_{4}(u)=-\sqrt{4-\sqrt{8}}=-\frac{u^{2}-4}{u} .
\end{gathered}
$$

Compositions: we have, for example, $\tau_{3}\left(\tau_{4}(u)\right)=\tau_{3}\left(-\frac{u^{2}-4}{u}\right)=-\frac{\tau_{3}(u)^{2}-4}{\tau_{3}(u)}=$ $-\frac{-\sqrt{8}}{\sqrt{4-\sqrt{8}}}=\sqrt{4+\sqrt{8}}=u$, which implies $\tau_{3} \circ \tau_{4}=\tau_{1}$. Below we work
out the multiplication tables for both $\operatorname{Gal}_{K}(F)$ (under function composition) and \mathbb{Z}_{4} (under addition $\bmod 4$). We can see that $\operatorname{Gal}_{K}(F) \cong \mathbb{Z}_{4}$ via the isomorphism ϕ defined by $\phi\left(\tau_{1}\right)=0, \phi\left(\tau_{2}\right)=2, \phi\left(\tau_{3}\right)=1, \phi\left(\tau_{4}\right)=3$. We also have $\operatorname{Gal}_{K}(F)=\left\langle\tau_{3}\right\rangle$.

\circ	τ_{1}	τ_{2}	τ_{3}	τ_{4}
τ_{1}	τ_{1}	τ_{2}	τ_{3}	τ_{4}
τ_{2}	τ_{2}	τ_{1}	τ_{4}	τ_{3}
τ_{3}	τ_{3}	τ_{4}	τ_{2}	τ_{1}
τ_{4}	τ_{4}	τ_{3}	τ_{1}	τ_{2}

+	0	2	1	3
0	0	2	1	3
2	2	0	3	1
1	1	3	2	0
3	3	1	0	2

(d) The subgroups of \mathbb{Z}_{4} are

$$
\begin{gathered}
H_{1}=\langle 0\rangle=\{0\}, \\
H_{2}=\langle 2\rangle=\{0,2\}, \\
H_{3}=\langle 1\rangle=\{0,1,2,3\} .
\end{gathered}
$$

Hence the subgroups of $\operatorname{Gal}_{K}(F)$ are

$$
\begin{gathered}
H_{1}=\left\langle\tau_{1}\right\rangle=\left\{\tau_{1}\right\}, \\
H_{2}=\left\langle\tau_{2}\right\rangle=\left\{\tau_{1}, \tau_{2}\right\}, \\
H_{3}=\left\langle\tau_{3}\right\rangle=\left\{\tau_{1}, \tau_{3}, \tau_{2}, \tau_{4}\right\} .
\end{gathered}
$$

We have

$$
\begin{gathered}
H_{1}^{\prime}=\left\{x \in F: \tau_{1}(x)=x\right\}=F=\mathbb{Q}[u] \\
H_{2}^{\prime}=\left\{x \in F: \tau_{1}(x)=\tau_{2}(x)=x\right\}=\text { to be determined }, \\
H_{3}^{\prime}=\left\{x \in F: \tau_{1}(x)=\tau_{3}(x)=\tau_{2}(x)=\tau_{4}(x)=x\right\}= \\
\left(\operatorname{Gal}_{K}(F)\right)^{\prime}=\left(K^{\prime}\right)^{\prime}=K^{\prime \prime}=K=\mathbb{Q} .
\end{gathered}
$$

A basis for F over \mathbb{Q} is $\left\{1, u, u^{2}, u^{3}\right\}$ and the typical element in F is $a+b u+$ $c u^{2}+d u^{3}$ where $a, b, c, d \in \mathbb{Q}$. This element belongs to H_{2}^{\prime} iff it is fixed by τ_{2}. In other words,

$$
\begin{gathered}
a+b u+c u^{2}+d u^{3} \in H_{2}^{\prime} \Leftrightarrow \\
\tau_{2}\left(a+b u+c u^{2}+d u^{3}\right)=a+b u+c u^{2}+d u^{3} \Leftrightarrow \\
a-b u+c u^{2}-d u^{3}=a+b u+c u^{2}+d u^{3} \Leftrightarrow
\end{gathered}
$$

$$
b=d=0
$$

Hence

$$
H_{2}^{\prime}=\left\{a+c u^{2}: a, c \in \mathbb{Q}\right\}=\mathbb{Q}\left[u^{2}\right]=\mathbb{Q}[4+\sqrt{8}]=\mathbb{Q}[\sqrt{8}] .
$$

So the Hasse diagrams are

$$
\left\langle\tau_{1}\right\rangle \subseteq\left\langle\tau_{2}\right\rangle \subseteq\left\langle\tau_{3}\right\rangle
$$

and

$$
\mathbb{Q}[\sqrt{4+\sqrt{8}}] \supseteq \mathbb{Q}[\sqrt{8}] \supseteq \mathbb{Q}
$$

(d) Since $\operatorname{Gal}_{K}(F)$ is abelian, every subgroup is normal. $H_{1}^{\prime}=\mathbb{Q}[\sqrt{4+\sqrt{8}}]$ is a splitting field of $x^{4}-8 x^{2}+8, H_{2}^{\prime}=\mathbb{Q}[\sqrt{8}]$ is a splitting field of $x^{2}-8$, and $H_{3}^{\prime}=\mathbb{Q}$ is a splitting field of $x-1$.

