Exam 4 Solutions Math 641 Fall 2014

Let $K = \mathbb{Q}$, $u = \sqrt{4 + \sqrt{8}}$, $\tau = K[u]$.

(a) Compute $[\tau : K]$, proving carefully that your irr(u, K) is actually irreducible.

(b) Prove that τ is a splitting field of irr(u, K). You should be able to express each root in terms of u.

(c) By a homework exercise, each $\tau \in \operatorname{Gal}_K(F)$ is determined by $\tau(u)$. Compute $\tau_i \circ \tau_j(u)$ for each pair $\tau_i, \tau_j \in \operatorname{Gal}_K(F)$, using the information in (b). Use this information to construct the group multiplication table for $\operatorname{Gal}_K(F)$ and to find an isomorphism between $\operatorname{Gal}_K(F)$ and one of the standard groups we have studied in this course. This will be useful for finding all the subgroups of $\operatorname{Gal}_K(F)$ in Part (d).

(d) Compute H' for each subgroup H of $\operatorname{Gal}_K(F)$. Arrange the subgroups and the intermediate fields into two Hasse diagrams. See pp. 132–133 for an example of Hasse diagrams and the process of finding fixed fields. There is also a Mathematica notebook on the course webpage which has examples of fixed fields.

(e) The field extension $K \subseteq F$ meets the hypotheses of the Fundamental Theorem of Galois Theory since it is a splitting field of characteristic zero. This theorem guarantees that when H is a normal subgroup of $\operatorname{Gal}_K(F)$, H'is normal over K, which implies that H' is a splitting field of some polynomial $f_H(x)$ in K[x]. Given each normal subgroup H, find a suitable polynomial $f_H(x)$.

Solutions:

(a)

$$u^{2} = 4 + \sqrt{8}$$
$$(u^{2} - 4)^{2} = 8$$
$$u^{4} - 8u^{2} + 8 = 0$$

 $x^4 - 8x^2 + 8$ is irreducible in $\mathbb{Q}[x]$: The rational roots of $x^4 - 8x^2 + 8$ belong to $\{\pm 1, \pm 2, \pm 4, \pm 8\}$, none of which are actual roots. Hence $x^4 - 8x^2 + 8$ has no linear factors in $\mathbb{Q}[x]$. If $x^4 - 8x^2 + 8$ has a quadratic factor in $\mathbb{Q}[x]$ then $x^4 - 8x + 8 = (x^2 + ax + b\epsilon)(x^2 + cx + d\epsilon)$ where $|\epsilon| = 1, a, c \in \mathbb{Z}$, $(b,d) \in \{(1,8), (2,4)\}$. Comparing coefficients of x^3 , x^2 , and x, a + c = 0, $ac + b\epsilon + d\epsilon = -8$, $bc\epsilon + ad\epsilon = 0$. Hence bc + ad = 0, c(b - d) = 0, c = 0, $\epsilon = -1$, b + d = 8, a contradiction. So $x^4 - 8x^2 + 8$ is irreducible in $\mathbb{Q}[x]$. Hence $\operatorname{irr}(u, \mathbb{Q}) = x^4 - 8x^2 + 8$.

Another solution: If $x^4 - 8x^2 + 8$ is reducible in $\mathbb{Q}[x]$ then it is reducible in $\mathbb{Z}[x]$, hence in $\mathbb{Z}_3[x]$, hence it must be possible to divide $x^4 - 8x^2 + 8$ by a monic polynomial of degree 1 or 2 in $\mathbb{Z}_3[x]$ and obtain a remainder of 0. There are 3 monic polynomials of degree 1 in $\mathbb{Z}_3[x]$ and 9 monic polynomials of degree 2 in $\mathbb{Z}_3[x]$, and dividing $x^4 - 8x^2 + 8$ by each of these 12 polynomials in $\mathbb{Z}_3[x]$ leaves a non-zero remainder in every case. Contradiction. Therefore $x^4 - 8x^2 + 8$ is irreducible in $\mathbb{Q}[x]$.

(b) The roots of $x^4 - 8x^2 + 8$ in \mathbb{C} are

$$(u_1, u_2, u_3, u_4) = (\sqrt{4 + \sqrt{8}}, -\sqrt{4 + \sqrt{8}}, \sqrt{4 - \sqrt{8}}, -\sqrt{4 - \sqrt{8}}).$$

We must show that each root belongs to $\mathbb{Q}[u]$ where $u = \sqrt{4 + \sqrt{8}}$. We have $u_1 = u$ and $u_2 = -u$. We also have

$$\frac{1}{u} = \frac{1}{\sqrt{4+\sqrt{8}}} = \frac{\sqrt{4-\sqrt{8}}}{\sqrt{8}} = \frac{u_3}{u^2-4},$$

hence $u_3 = \frac{u^2 - 4}{u}$ and $u_4 = -\frac{u^2 - 4}{u}$. Therefore $u_1, u_2, u_3, u_4 \in \mathbb{Q}[u]$. (c) By the Galois Group Algorithm, v_1 can be any root of $x^4 - 8x^2 + 8$ in $\mathbb{Q}[u]$. This yields $\operatorname{Gal}_K(F) = \{\tau_1, \tau_2, \tau_3, \tau_4\}$ where

$$\tau_1(u) = \sqrt{4 + \sqrt{8}} = u,$$

$$\tau_2(u) = -\sqrt{4 + \sqrt{8}} = -u,$$

$$\tau_3(u) = \sqrt{4 - \sqrt{8}} = \frac{u^2 - 4}{u},$$

$$\tau_4(u) = -\sqrt{4 - \sqrt{8}} = -\frac{u^2 - 4}{u}$$

Compositions: we have, for example, $\tau_3(\tau_4(u)) = \tau_3(-\frac{u^2-4}{u}) = -\frac{\tau_3(u)^2-4}{\tau_3(u)} = -\frac{-\sqrt{8}}{\sqrt{4-\sqrt{8}}} = \sqrt{4+\sqrt{8}} = u$, which implies $\tau_3 \circ \tau_4 = \tau_1$. Below we work

out the multiplication tables for both $\operatorname{Gal}_K(F)$ (under function composition) and \mathbb{Z}_4 (under addition mod 4). We can see that $\operatorname{Gal}_K(F) \cong \mathbb{Z}_4$ via the isomorphism ϕ defined by $\phi(\tau_1) = 0$, $\phi(\tau_2) = 2$, $\phi(\tau_3) = 1$, $\phi(\tau_4) = 3$. We also have $\operatorname{Gal}_K(F) = \langle \tau_3 \rangle$.

0	τ_1	τ_2	$ au_3$	$ au_4$]	+	0	2	1	3
τ_1	τ_1	τ_2	$ au_3$	$ au_4$		0	0	2	1	3
τ_2	τ_2	τ_1	$ au_4$	$ au_3$]	2	2	0	3	1
τ_3	τ_3	τ_4	$ au_2$	$ au_1$		1	1	3	2	0
$ au_4$	τ_4	τ_3	τ_1	$ au_2$]	3	3	1	0	2

(d) The subgroups of \mathbb{Z}_4 are

$$H_1 = \langle 0 \rangle = \{0\},$$

 $H_2 = \langle 2 \rangle = \{0, 2\},$
 $H_3 = \langle 1 \rangle = \{0, 1, 2, 3\}.$

Hence the subgroups of $\operatorname{Gal}_K(F)$ are

$$H_1 = \langle \tau_1 \rangle = \{\tau_1\},$$

$$H_2 = \langle \tau_2 \rangle = \{\tau_1, \tau_2\},$$

$$H_3 = \langle \tau_3 \rangle = \{\tau_1, \tau_3, \tau_2, \tau_4\}.$$

We have

$$H'_{1} = \{x \in F : \tau_{1}(x) = x\} = F = \mathbb{Q}[u]$$
$$H'_{2} = \{x \in F : \tau_{1}(x) = \tau_{2}(x) = x\} = \text{to be determined},$$
$$H'_{3} = \{x \in F : \tau_{1}(x) = \tau_{3}(x) = \tau_{2}(x) = \tau_{4}(x) = x\} = (\operatorname{Gal}_{K}(F))' = (K')' = K'' = K = \mathbb{Q}.$$

A basis for F over \mathbb{Q} is $\{1, u, u^2, u^3\}$ and the typical element in F is $a + bu + cu^2 + du^3$ where $a, b, c, d \in \mathbb{Q}$. This element belongs to H'_2 iff it is fixed by τ_2 . In other words,

$$a + bu + cu^{2} + du^{3} \in H'_{2} \Leftrightarrow$$

$$\tau_{2}(a + bu + cu^{2} + du^{3}) = a + bu + cu^{2} + du^{3} \Leftrightarrow$$

$$a - bu + cu^{2} - du^{3} = a + bu + cu^{2} + du^{3} \Leftrightarrow$$

$$b = d = 0.$$

Hence

$$H'_2 = \{a + cu^2 : a, c \in \mathbb{Q}\} = \mathbb{Q}[u^2] = \mathbb{Q}[4 + \sqrt{8}] = \mathbb{Q}[\sqrt{8}].$$

So the Hasse diagrams are

$$\langle \tau_1 \rangle \subseteq \langle \tau_2 \rangle \subseteq \langle \tau_3 \rangle$$

and

$$\mathbb{Q}[\sqrt{4+\sqrt{8}}] \supseteq \mathbb{Q}[\sqrt{8}] \supseteq \mathbb{Q}.$$

(d) Since $\operatorname{Gal}_K(F)$ is abelian, every subgroup is normal. $H'_1 = \mathbb{Q}[\sqrt{4+\sqrt{8}}]$ is a splitting field of $x^4 - 8x^2 + 8$, $H'_2 = \mathbb{Q}[\sqrt{8}]$ is a splitting field of $x^2 - 8$, and $H'_3 = \mathbb{Q}$ is a splitting field of x - 1.