Exam 3 Solutions Math 641 Fall 2014

Let $u_{1}, u_{2}, u_{3}, u_{4} \in \mathbb{C}$ be the roots of $x^{4}+2 x^{2}-7$. Let $E=\mathbb{Q}\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ and $G=\operatorname{Gal}_{\mathbb{Q}}(E)$.
(a) Using the Galois Group Algorithm, compute the elements of G. Make sure to prove that your irreducible polynomials are actually irreducible.
(b) Is G isomorphic to $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, D_{4}$, or none of these?
(c) Compute $f(\sqrt{7 / 8} i)$ for each $f \in G$..

Solution: The roots of $x^{4}+2 x^{2}-7$ are $\pm \sqrt{-1 \pm \sqrt{8}}$. We will set

$$
\begin{aligned}
& u_{1}=\sqrt{-1+\sqrt{8}} \\
& u_{2}=-\sqrt{-1+\sqrt{8}} \\
& u_{3}=\sqrt{-1-\sqrt{8}} \\
& u_{4}=-\sqrt{-1-\sqrt{8}}
\end{aligned}
$$

Setting

$$
\begin{aligned}
& U_{1}=\sqrt{-1+\sqrt{8}} \\
& U_{2}=\sqrt{-1-\sqrt{8}}
\end{aligned}
$$

we have

$$
\mathbb{Q}\left[u_{1}, u_{2}, u_{3}, u_{4}\right]=\mathbb{Q}\left[U_{1}, U_{2}\right] .
$$

Claim: $\operatorname{irr}\left(U_{1}, \mathbb{Q}\right)=x^{4}+2 x^{2}-7$. To prove this, suppose $x^{4}+2 x^{2}-7=$ $a(x) b(x)$ where $a(x), b(x) \in \mathbb{Q}[x]$. Then $x^{4}+2 x^{2}-7=A(x) B(x)$ where $A(x), B(x) \in \mathbb{Z}[x]$ are monic polynomials. The only possible linear factors are therefore $x+7, x+1, x-1$, and $x-7$, but one can check that none of the numbers in the set $\{-7,-1,1,7\}$ are roots of $x^{4}+2 x^{2}-7$. If $A(x)$ and $B(x)$ are quadratic then we must have $x^{4}+2 x^{2}-7=\left(x^{2}+h x+\epsilon\right)\left(x^{2}+k x-7 \epsilon\right)$ where $|\epsilon|=1$. Expanding this,

$$
x^{4}+2 x^{2}-7=x^{4}+(h+k) x^{3}+(h k-6 \epsilon) x^{2}+\epsilon(k-7 h) x-7 .
$$

Comparing coefficients of x^{3} and x, we must have $h+k=0$ and $k-7 h=0$. This forces $h=k=0$, which implies

$$
x^{4}+2 x^{2}-7=x^{4}-6 \epsilon x^{2}-7
$$

This is impossible because $|\epsilon|=1$. So the claim is proved.
Claim: $\operatorname{irr}\left(U_{2}, \mathbb{Q}\left[U_{1}\right]\right)=x^{2}+U_{1}^{2}+2$. It's clear that $U_{2}^{2}+U_{1}^{2}+2=0$. Moreover, since U_{2} is pure imaginary while U_{1} is real, $U_{2} \notin \mathbb{Q}\left[U_{1}\right]$, so U_{2} is not the root of a monic linear polynomial in $\mathbb{Q}\left[U_{1}\right][x]$.
Constructing the Galois Group: v_{1} can be any root of $x^{4}+2 x^{2}-7$, hence $v_{1} \in\left\{U_{1},-U_{1}, U_{2},-U_{2}\right\}$.
Case 1: $v_{1}=U_{1}$. This implies $\operatorname{irr}\left(U_{2}, \mathbb{Q}\left[U_{1}\right]\right)^{\prime}=x^{2}+U_{1}^{2}+2=x^{2}+1+\sqrt{8}$ and $v_{2}= \pm \sqrt{-1-\sqrt{8}}= \pm U_{2}$.
Case 2: $v_{1}=-U_{1}$. This implies $\operatorname{irr}\left(U_{2}, \mathbb{Q}\left[U_{1}\right]\right)^{\prime}=x^{2}+U_{1}^{2}+2=x^{2}+1+\sqrt{8}$ and $v_{2}= \pm \sqrt{-1-\sqrt{8}}= \pm U_{2}$.
Case 3: $v_{1}=U_{2}$. This implies $\operatorname{irr}\left(U_{2}, \mathbb{Q}\left[U_{1}\right]\right)^{\prime}=x^{2}+U_{2}^{2}+2=x^{2}+1-\sqrt{8}$ and $v_{2}= \pm \sqrt{-1+\sqrt{8}}= \pm U_{1}$.
Case 4: $v_{1}=-U_{2}$. This implies $\operatorname{irr}\left(U_{2}, \mathbb{Q}\left[U_{1}\right]\right)^{\prime}=x^{2}+U_{2}^{2}+2=x^{2}+1-\sqrt{8}$ and $v_{2}= \pm \sqrt{-1+\sqrt{8}}= \pm U_{1}$.
We have identified 8 Galois Group elements:

$$
\begin{gathered}
f_{1}: a\left(U_{1}, U_{2}\right) \mapsto a\left(U_{1}, U_{2}\right) \\
f_{2}: a\left(U_{1}, U_{2}\right) \mapsto a\left(U_{1},-U_{2}\right) \\
f_{3}: a\left(U_{1}, U_{2}\right) \mapsto a\left(-U_{1}, U_{2}\right) \\
f_{4}: a\left(U_{1}, U_{2}\right) \mapsto a\left(-U_{1},-U_{2}\right) \\
f_{5}: a\left(U_{1}, U_{2}\right) \mapsto a\left(U_{2}, U_{1}\right) \\
f_{6}: a\left(U_{1}, U_{2}\right) \mapsto a\left(U_{2},-U_{1}\right) \\
f_{7}: a\left(U_{1}, U_{2}\right) \mapsto a\left(-U_{2}, U_{1}\right) \\
f_{8}: a\left(U_{1}, U_{2}\right) \mapsto a\left(-U_{2},-U_{1}\right) .
\end{gathered}
$$

It is not difficult to check that $f_{6} \circ f_{5}=f_{3}$ and that $f_{5} \circ f_{6}=f_{2}$, hence G is not abelian. Setting $S=f_{6}$ and $T=f_{5}$, one can check that $o(S)=4$, $o(T)=2$, and $T S=S^{3} T$. Hence $G \cong D_{4}$.
To compute $f(\sqrt{7 / 8} i)$ for each $f \in G$ we must first express $\sqrt{7 / 8} i$ in terms of U_{1} and U_{2}. We have:

$$
\begin{gathered}
U_{1}=\sqrt{-1+\sqrt{8}} \\
U_{2}=\sqrt{1+\sqrt{8}} i \\
U_{1} U_{2}=\sqrt{7} i \\
U_{1}^{2}+1=\sqrt{8} \\
U_{2}^{2}+1=-\sqrt{8} \\
\frac{U_{1} U_{2}}{U_{1}^{2}+1}=\sqrt{7 / 8} i
\end{gathered}
$$

Since each $f \in G$ is a field isomorphism,

$$
f(\sqrt{7 / 8} i)=f\left(\frac{U_{1} U_{2}}{U_{1}^{2}+1}\right)=\frac{f\left(U_{1}\right) f\left(U_{2}\right)}{f\left(U_{1}\right)^{2}+1} .
$$

This implies

$$
\begin{aligned}
& f_{1}(\sqrt{7 / 8} i)=\frac{U_{1} U_{2}}{U_{1}^{2}+1}=\sqrt{7 / 8} i \\
& f_{2}(\sqrt{7 / 8} i)=\frac{-U_{1} U_{2}}{U_{1}^{2}+1}=-\sqrt{7 / 8} i \\
& f_{3}(\sqrt{7 / 8} i)=\frac{-U_{1} U_{2}}{U_{1}^{2}+1}=-\sqrt{7 / 8} i \\
& f_{4}(\sqrt{7 / 8} i)=\frac{U_{1} U_{2}}{U_{1}^{2}+1}=\sqrt{7 / 8} i \\
& f_{5}(\sqrt{7 / 8} i)=\frac{U_{2} U_{1}}{U_{2}^{2}+1}=-\sqrt{7 / 8} i \\
& f_{6}(\sqrt{7 / 8} i)=\frac{-U_{2} U_{1}}{U_{2}^{2}+1}=\sqrt{7 / 8} i \\
& f_{7}(\sqrt{7 / 8} i)=\frac{-U_{2} U_{1}}{U_{2}^{2}+1}=\sqrt{7 / 8} i \\
& f_{8}(\sqrt{7 / 8} i)=\frac{U_{2} U_{1}}{U_{2}^{2}+1}=-\sqrt{7 / 8} i
\end{aligned}
$$

