Exam 3 Solutions Math 641 Fall 2014

Let $u_1, u_2, u_3, u_4 \in \mathbb{C}$ be the roots of $x^4 + 2x^2 - 7$. Let $E = \mathbb{Q}[u_1, u_2, u_3, u_4]$ and $G = \text{Gal}_{\mathbb{Q}}(E)$.

- (a) Using the Galois Group Algorithm, compute the elements of G. Make sure to prove that your irreducible polynomials are actually irreducible.
- (b) Is G isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, D_4 , or none of these?
- (c) Compute $f(\sqrt{7/8} i)$ for each $f \in G$...

Solution: The roots of $x^4 + 2x^2 - 7$ are $\pm \sqrt{-1 \pm \sqrt{8}}$. We will set

$$u_1 = \sqrt{-1 + \sqrt{8}}$$

$$u_2 = -\sqrt{-1 + \sqrt{8}}$$

$$u_3 = \sqrt{-1 - \sqrt{8}}$$

$$u_4 = -\sqrt{-1 - \sqrt{8}}.$$

Setting

$$U_1 = \sqrt{-1 + \sqrt{8}}$$

$$U_2 = \sqrt{-1 - \sqrt{8}}$$

we have

$$\mathbb{Q}[u_1, u_2, u_3, u_4] = \mathbb{Q}[U_1, U_2].$$

Claim: $\operatorname{irr}(U_1,\mathbb{Q}) = x^4 + 2x^2 - 7$. To prove this, suppose $x^4 + 2x^2 - 7 = a(x)b(x)$ where $a(x), b(x) \in \mathbb{Q}[x]$. Then $x^4 + 2x^2 - 7 = A(x)B(x)$ where $A(x), B(x) \in \mathbb{Z}[x]$ are monic polynomials. The only possible linear factors are therefore x+7, x+1, x-1, and x-7, but one can check that none of the numbers in the set $\{-7, -1, 1, 7\}$ are roots of $x^4 + 2x^2 - 7$. If A(x) and B(x) are quadratic then we must have $x^4 + 2x^2 - 7 = (x^2 + hx + \epsilon)(x^2 + kx - 7\epsilon)$ where $|\epsilon| = 1$. Expanding this,

$$x^{4} + 2x^{2} - 7 = x^{4} + (h+k)x^{3} + (hk - 6\epsilon)x^{2} + \epsilon(k - 7h)x - 7.$$

Comparing coefficients of x^3 and x, we must have h + k = 0 and k - 7h = 0. This forces h = k = 0, which implies

$$x^4 + 2x^2 - 7 = x^4 - 6\epsilon x^2 - 7$$
.

This is impossible because $|\epsilon| = 1$. So the claim is proved.

Claim: $\operatorname{irr}(U_2, \mathbb{Q}[U_1]) = x^2 + U_1^2 + 2$. It's clear that $U_2^2 + U_1^2 + 2 = 0$. Moreover, since U_2 is pure imaginary while U_1 is real, $U_2 \notin \mathbb{Q}[U_1]$, so U_2 is not the root of a monic linear polynomial in $\mathbb{Q}[U_1][x]$.

Constructing the Galois Group: v_1 can be any root of $x^4 + 2x^2 - 7$, hence $v_1 \in \{U_1, -U_1, U_2, -U_2\}$.

Case 1: $v_1 = U_1$. This implies $irr(U_2, \mathbb{Q}[U_1])' = x^2 + U_1^2 + 2 = x^2 + 1 + \sqrt{8}$ and $v_2 = \pm \sqrt{-1 - \sqrt{8}} = \pm U_2$.

Case 2: $v_1 = -U_1$. This implies $irr(U_2, \mathbb{Q}[U_1])' = x^2 + U_1^2 + 2 = x^2 + 1 + \sqrt{8}$ and $v_2 = \pm \sqrt{-1 - \sqrt{8}} = \pm U_2$.

Case 3: $v_1 = U_2$. This implies $irr(U_2, \mathbb{Q}[U_1])' = x^2 + U_2^2 + 2 = x^2 + 1 - \sqrt{8}$ and $v_2 = \pm \sqrt{-1 + \sqrt{8}} = \pm U_1$.

Case 4: $v_1 = -U_2$. This implies $\operatorname{irr}(U_2, \mathbb{Q}[U_1])' = x^2 + U_2^2 + 2 = x^2 + 1 - \sqrt{8}$ and $v_2 = \pm \sqrt{-1 + \sqrt{8}} = \pm U_1$.

We have identified 8 Galois Group elements:

$$f_1: a(U_1, U_2) \mapsto a(U_1, U_2)$$

$$f_2: a(U_1, U_2) \mapsto a(U_1, -U_2)$$

$$f_3: a(U_1, U_2) \mapsto a(-U_1, U_2)$$

$$f_4: a(U_1, U_2) \mapsto a(-U_1, -U_2)$$

$$f_5: a(U_1, U_2) \mapsto a(U_2, U_1)$$

$$f_6: a(U_1, U_2) \mapsto a(U_2, -U_1)$$

$$f_7: a(U_1, U_2) \mapsto a(-U_2, U_1)$$

$$f_8: a(U_1, U_2) \mapsto a(-U_2, U_1)$$

It is not difficult to check that $f_6 \circ f_5 = f_3$ and that $f_5 \circ f_6 = f_2$, hence G is not abelian. Setting $S = f_6$ and $T = f_5$, one can check that o(S) = 4, o(T) = 2, and $TS = S^3T$. Hence $G \cong D_4$.

To compute $f(\sqrt{7/8} i)$ for each $f \in G$ we must first express $\sqrt{7/8} i$ in terms of U_1 and U_2 . We have:

$$U_1 = \sqrt{-1 + \sqrt{8}}$$

$$U_2 = \sqrt{1 + \sqrt{8}} i$$

$$U_1 U_2 = \sqrt{7} i$$

$$U_1^2 + 1 = \sqrt{8}$$

$$U_2^2 + 1 = -\sqrt{8}$$

$$\frac{U_1 U_2}{U_1^2 + 1} = \sqrt{7/8} i$$

Since each $f \in G$ is a field isomorphism,

$$f(\sqrt{7/8}\ i) = f\left(\frac{U_1U_2}{U_1^2 + 1}\right) = \frac{f(U_1)f(U_2)}{f(U_1)^2 + 1}.$$

This implies

$$f_1(\sqrt{7/8} i) = \frac{U_1 U_2}{U_1^2 + 1} = \sqrt{7/8} i$$

$$f_2(\sqrt{7/8} i) = \frac{-U_1 U_2}{U_1^2 + 1} = -\sqrt{7/8} i$$

$$f_3(\sqrt{7/8} i) = \frac{-U_1 U_2}{U_1^2 + 1} = -\sqrt{7/8} i$$

$$f_4(\sqrt{7/8} i) = \frac{U_1 U_2}{U_1^2 + 1} = \sqrt{7/8} i$$

$$f_5(\sqrt{7/8} i) = \frac{U_2 U_1}{U_2^2 + 1} = -\sqrt{7/8} i$$

$$f_6(\sqrt{7/8} i) = \frac{-U_2 U_1}{U_2^2 + 1} = \sqrt{7/8} i$$

$$f_7(\sqrt{7/8} i) = \frac{-U_2 U_1}{U_2^2 + 1} = \sqrt{7/8} i$$

$$f_8(\sqrt{7/8} i) = \frac{U_2 U_1}{U_2^2 + 1} = -\sqrt{7/8} i$$