Exam 2 Solutions Math 641 Fall 2014

Definition: Let R and S be commutative rings with $0 \neq 1$ in each. The ring structure on $R \times S$ is defined by $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and $(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right)$.

1. Let $R=\mathbb{Q}[x]$. Let I, J, and K be the ideals of R defined by $I=(x-1)$, $J=\left(x^{2}+x+1\right)$, and $K=\left(x^{3}-1\right)$. You will prove in this problem that $R / K \cong R / I \times R / J$.
(a) Define $\phi: R \rightarrow R / I \times R / J$ by $\phi(f(x))=(I+f(x), J+f(x))$. Prove that ϕ is a ring homomorphism.
(b) Prove that $K \subseteq \operatorname{ker} \phi$.
(c) Prove that ker $\phi \subseteq K$.
(d) Find $a(x) \in \mathbb{Q}[x]$ and $b(x) \in \mathbb{Q}[x]$ so that $a(x)(x-1)+b(x)\left(x^{2}+x+1\right)=1$.
(e) Using (d), find $\mu(x) \in \mathbb{Q}[x]$ and $\nu(x) \in \mathbb{Q}[x]$ so that $\phi(\mu(x))=(I+1, J+0)$ and $\phi(\nu(x))=(I+0, J+1)$.
(f) Using (e), prove that ϕ is surjective by finding a formula for $f(x)$ in terms of $p(x)$ and $q(x)$ such that $\phi(f(x))=(I+p(x), J+q(x))$. Check your work by finding $f(x)$ such that $\phi(f(x))=\left(I+3 x^{2}, J+6 x\right)$.

Hint:

$$
\begin{gathered}
(I+p(x), J+q(x))=(I+1, J+0)(I+p(x), J+p(x))+ \\
(I+0, J+1)(I+q(x), J+q(x)) .
\end{gathered}
$$

Solution:

(a) ϕ preserves addition: $\phi(f(x)+g(x))=(I+f(x)+g(x), J+f(x)+g(x))=$ $((I+f(x))+(I+g(x)),(J+f(x))+(J+g(x)))=(I+f(x), J+f(x))+$ $(I+g(x), J+g(x))=\phi(f(x))+\phi(g(x))$.
ϕ preserves multiplication: $\phi(f(x) g(x))=(I+f(x) g(x), J+f(x) g(x))=$ $((I+f(x))(I+g(x)),(J+f(x))(J+g(x))=(I+f(x), J+f(x))(I+g(x), J+$ $g(x))=\phi(f(x)) \phi(g(x))$.
(b) $f(x) \in K \Longrightarrow f(x)=g(x)\left(x^{3}-1\right)=g(x)(x-1)\left(x^{2}+x+1\right) \Longrightarrow f(x) \in$ I and $f(x) \in J \Longrightarrow \phi(f(x))=(I+f(x), J+f(x))=(I+0, J+0) \Longrightarrow$ $f(x) \in \operatorname{ker} \phi$.
(c) $f(x) \in \operatorname{ker} \phi \quad \Longrightarrow(I+f(x), J+f(x))=(I+0, J+0) \Longrightarrow f(x) \in$ I and $f(x) \in J \Longrightarrow f(x)=a(x)(x-1)=b(x)\left(x^{2}+x+1\right) \Longrightarrow b(1)=$ $0 \Longrightarrow b(x)=c(x)(x-1) \Longrightarrow f(x)=c(x)(x-1)\left(x^{2}+x+1\right)=c(x)\left(x^{3}-\right.$ 1) $\Longrightarrow f(x) \in K$.
(d) Using Euclid's Method and Mathematica, I obtained $a(x)=-1-(2 / 3) x-$ $(1 / 3) x^{2}$ and $b(x)=(1 / 3) x$.
(e) Since $a(x)(x-1) \in I$ and $a(x)(x-1)-1 \in J$, we can set $\nu(x)=$ $a(x)(x-1)$. Since $b(x)\left(x^{2}+x+1\right) \in J$ and $b(x)\left(x^{2}+x+1\right)-1 \in I$, we can set $\mu(x)=b(x)\left(x^{2}+x+1\right)$.
(f) We have $(I+p(x), J+q(x))=(I+1, J+0)(I+p(x), J+p(x))+(I+$ $0, J+1)(I+q(x), J+q(x))=\phi(\mu(x)) \phi(p(x))+\phi(\nu(x)) \phi(q(x))=\phi(\mu(x) p(x)+$ $\nu(x) q(x))$. Therefore we can set $f(x)=\mu(x) p(x)+\nu(x) q(x)$. Setting $p(x)=$ $3 x^{2}, q(x)=6 x, \nu(x)=a(x)(x-1)=-\frac{x^{3}}{3}-\frac{x^{2}}{3}-\frac{x}{3}+1, \mu(x)=b(x)\left(x^{2}+x+1\right)=$ $\frac{x^{3}}{3}+\frac{x^{2}}{3}+\frac{x}{3}$, we obtain $f(x)=6 x-2 x^{2}-x^{3}-x^{4}+x^{5}$. We have $f(x)-3 x^{2}=$ $(x-2)(x-1) x\left(x^{2}+2 x+3\right) \in I$ and $f(x)-6 x=(x-2) x^{2}\left(x^{2}+x+1\right) \in J$, as desired.
2. Let $f(x)=7+7 x+7 x^{2}+7 x^{3}+x^{4}, I=(f(x))$, and $E=\mathbb{Q}[x] / I$.
(a) Prove that E is a field.
(b) Prove that E is a field extension of \mathbb{Q}. In other words, identify a field $F \subseteq E$ and a ring isomorphism $\phi: \mathbb{Q} \rightarrow F$. Prove that ϕ has the required properties.
(c) Let $\theta=I+x$ and $g(y)=(I+7)+(I+7) y+(I+7) y^{2}+(I+7) y^{3}+(I+1) y^{4} \in$ $E[y]$. Prove that θ is a root of $g(y)$ in E.
(d) Find $h(y) \in E[y]$ such that $g(y)=((I+1) y-\theta) h(y)$. Use long division to compute $h(y)$.
(e) Find the multiplicative inverse of θ in E.

Solution:

(a) $f(x)$ is irreducible using Eisenstein's Criterion $(p=7)$. Hence $(f(x))$ is a maximal ideal and $\mathbb{Q}[x] /(f(x))$ is a field.
(b) Set $F=\{I+r: r \in \mathbb{Q}\}, \phi(r)=I+r$. Then $\phi(r+s)=I+r+s=$ $(I+r)+(I+s)=\phi(r)+\phi(s), \phi(r s)=I+r s=(I+r)(I+s)=\phi(r) \phi(s) . \phi$ is clearly surjective. ϕ is injective: $\phi(r)=\phi(s)$ implies $I+r=I+s$ implies
$r-s \in I$ implies $r-s=f(x) g(x)$. If $g(x) \neq 0$ then $f(x) g(x)$ has degree ≥ 4, which contradicts $\operatorname{deg}(r-s) \leq 0$ Therefore $g(x)=0, r-s=0, r=s$.
(c) $g(\theta)=(I+7)+(I+7)(I+x)+(I+7)(I+x)^{2}+(I+7)(I+x)^{3}+(I+x)^{4}=(I+$ $7)+(I+7 x)+\left(I+7 x^{2}\right)+\left(I+7 x^{3}\right)+\left(I+x^{4}\right)=I+7+7 x+7 x^{2}+7 x^{3}+x^{4}=I+0$ since $7+7 x+7 x^{2}+7 x^{3}+x^{4}-0 \in I$.
(d) Long division yields

$$
\begin{gathered}
\frac{(I+1) y^{4}+(I+7) y^{3}+(I+7) y^{2}+(I+7) y+(I+7)}{(I+1) y-(I+x)}= \\
(I+1) y^{3}+(I+x+7) y^{2}+\left(I+x^{2}+7 x+7\right) y+\left(I+x^{3}+7 x^{2}+7 x+7\right) .
\end{gathered}
$$

Hence

$$
\begin{gathered}
(I+7)+(I+7) y+(I+7) y^{2}+(I+7) y^{3}+(I+1) y^{4}= \\
(y-(I+x))\left((I+1) y^{3}+(I+x+7) y^{2}+\left(I+x^{2}+7 x+7\right) y+\left(I+x^{3}+7 x^{2}+7 x+7\right)\right) .
\end{gathered}
$$

That is, after identifying $I+k$ with k and $I+x^{k}$ with θ^{k}, we have

$$
7+7 y+7 y^{2}+7 y^{3}+y^{4}=(y-\theta)\left(y^{3}+(\theta+7) y^{2}+\left(\theta^{2}+7 \theta+7\right) y+\left(\theta^{3}+7 \theta^{2}+7 \theta+7\right)\right) .
$$

Check:

$$
\begin{gathered}
(y-\theta)\left(y^{3}+(\theta+7) y^{2}+\left(\theta^{2}+7 \theta+7\right) y+\left(\theta^{3}+7 \theta^{2}+7 \theta+7\right)\right)= \\
-7 \theta-7 \theta^{2}-7 \theta^{3}-\theta^{4}+7 y+7 y^{2}+7 y^{3}+y^{4}= \\
7+7 y+7 y^{2}+7 y^{3}+y^{4}
\end{gathered}
$$

since

$$
\theta^{4}+7 \theta^{3}+7 \theta^{2}+7 \theta=-7 .
$$

(e) One method is to find $a(x)$ and $b(x)$ in $\mathbb{Q}[x]$ such that $a(x)\left(7+7 x+7 x^{2}+\right.$ $\left.7 x^{3}+x^{4}\right)+b(x) x=1$. This implies $b(\theta) \theta=1$, hence the inverse of θ is $b(\theta)$. Another method is to observe that since $\theta^{4}+7 \theta^{3}+7 \theta^{2}+7 \theta+7=0$, we have

$$
\theta\left(-\frac{1}{7} \theta^{3}-\theta^{2}-\theta-1\right)=1
$$

Either way, the inverse is

$$
I-\frac{1}{7} x^{3}-x^{2}-x-1 .
$$

