
Exam 1 Solutions Math 641 Fall 2014

Instructions: Group theory is rich in definitions and theorems. When
using a theorem, make sure to cite the theorem clearly and prove that the
hypotheses are met. When you state that a hypothesis is met, make sure to
prove that all definitions are satisfied. Unsupported claims will receive no
credit. Properties proved in class do not need to be reproved. Keep your
solutions brief and to the point. A well-thought-out proof does not need to
go on for pages.

1. Let

G =

{[
â b̂

ĉ d̂

]
: â, b̂, ĉ, d̂ ∈ Z5 and det

[
â b̂

ĉ d̂

]
6= 0̂

}
and

H =

{[
â b̂

ĉ d̂

]
∈ G : det

[
â b̂

ĉ d̂

]
= 1̂

}
.

(a) You can assume that G is a group under matrix multiplication. Prove
that G is non-abelian and contains 480 elements.

(b) By Cauchy’s theorem, G has an element of order 5. Find one.

(c) Prove that H is a normal subgroup of G.

(d) Prove that for each m ∈ G, Hm = {g ∈ G : det(g) = det(m)}.

(e) Prove that G/H ∼= Z4 where the group operation in Z4 is addition.

Solutions:

(a) Let g1 =

[
1̂ 1̂

0̂ 1̂

]
, g2 =

[
1̂ 1̂

1̂ 0̂

]
. Then g1g2 =

[
2̂ 1̂

1̂ 0̂

]
and g2g1 =

[
1̂ 2̂

1̂ 0̂

]
,

hence G is not abelian.

There are 54 = 625 matrices with entries in Z5. We will count the number
that have zero determinant, then subtract from 625. We are really counting
all (a, b, c, d) ∈ {0, 1, 2, 3, 4}4 such that ad ≡ bc mod 5. There are 9 solutions
to xy ≡ 0 mod 5, 4 solutions to xy ≡ 1 mod 5, 4 solutions to xy ≡ 2 mod
5, 4 solutions to xy ≡ 3 mod 5, and 4 solutions to xy ≡ 4 mod 5. Hence
there are 92 + 42 + 42 + 42 + 42 = 145 matrices with determinant 0̂, leaving
625− 145 = 180 matrices with non-zero determinant.
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An alternate solution is this: there are 52 − 1 = 24 possible choices for
the first column. Given that there are 52 − 5 = 20 possible choices for the
second column (cannot be a multiple of the first column), the total number
of matrices in G is 24 · 20 = 480.

(b) If g has order 5 and determinant d̂ then d̂5 = 1̂. This is only possible if
d ≡ 1 mod 5. So a strategy to follow is to look for a determinant 1̂ matrix

g which satisfies g5 = e. A matrix that works is g =

[
1̂ 1̂

0̂ 1̂

]
. Since g5 = e,

o(g)|5. Since o(g) 6= 1, o(g) = 5.

(c) H is the kernel of the homomorphism φ : G→ Z∗
5 given by φ(g) = det(g).

Kernels are normal subgroups.

An alternate solution is this: h1, h2 ∈ H implies det(h1h
−1
2 ) = det(h1) det(h2)

−1 =
1 · (1)−1 = 1 implies h1h

−1
2 ∈ H, hence H is a subgroup of G. More-

over g ∈ G and h ∈ H implies det(ghg−1) = det(g) det(h) det(g)−1 =
det(g) · 1 · det(g)−1 = 1 implies ghg−1 ∈ H, hence H is normal in G.

Note that is not sufficient merely to prove that ghg−1 for all g ∈ G, h ∈ G.
Example: G = S5, H = set of all 3-cycles in H. H is not a subgroup
of Sn since it doesn’t contain the identity permutation, but σ(a, b, c)σ−1 =
(σ(a), σ(b), σ(c)) ∈ H.

(d) We proved in class that {g ∈ G : φ(g) = φ(m)} = Km where K is
the kernel of φ (defined in (c)). Since K = H, we have {g ∈ G : det(g) =
det(m)} = Hm.

Alternate solution: Let LHS = Hm and RHS = {g ∈ G : det(g) = det(m)}.
We must show LHS ⊆ RHS and RHS ⊆ LHS.

hm ∈ LHS implies det(hm) = det(h) det(m) = det(m), hence hm ∈ RHS.
So we have LHS ⊆ RHS.

g ∈ RHS implies det(g) = det(m) implies det(gm−1) = det(g) det(m)−1 = 1
implies gm−1 ∈ H implies g = (gm−1)m ∈ Hm. So we have RHS ⊆ LHS.

(e) Let ga =

[
â 0
0 1

]
. ThenG/H = {Hg1, Hg2, Hg3, Hg4}. Since (g2, g

2
2, g

3
2, g

4
2) =

(g2, g4, g3, g1), we have G/H = 〈Hg2〉. Hence G/H is cyclic of order 4 and is
isomorphic to Z4 under addition.

Alternative solution: define ψ : Z4 → G/H via ψ([a]4) = Hg2a where g2a =[
2̂a 0
0 1

]
. Well-defined: [a]4 = [b]4 implies a = b+4k implies 2a = (2b)(16k) ≡
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2b mod 5, therefore g2a = g2b , therefore Hg2a = Hg2b , therefore ψ([a]4) =
ψ([b]4). Bijective: (ψ([0]), ψ([1]), ψ([2]), ψ([3])) = (Hg1, Hg2, Hg4, Hg8) =
(Hg1, Hg2, Hg4, Hg3). Homomorphism: ψ([a] + [b]) = ψ([a+ b]) = Hg2a+b =
Hg2aHg2b = ψ([a])ψ([b]). Hence ψ is an isomorphism between Z4 and G/H.

2. In the following problems, Sn is the group of permutations of {1, 2, . . . , n}
under function composition.

(a) Prove that if σ ∈ Sn factors into disjoint cycles as σ1 · · ·σk then

o(σ) = lcm(o(σ1), o(σ2), . . . , o(σk)).

(b) Let p be a prime. Prove that if σ ∈ Sn satisfies o(σ) = p then σ is a
product of disjoint p-cycles.

(c) Find permutations σ and τ satisfying

gcd(o(στ), o(σ)) = gcd(o(στ), o(τ)) = 1.

Solutions:

(a) Write o(σ) = m. Since disjoint cycles commute with each other, for any
integer a we have

σa = σa
1 · · ·σa

k .

If a is any common multiple of o(σ1), . . . , o(σk) then σa = e since each σa
i = e.

Therefore
m ≤ lcm(o(σ1), o(σ2), . . . , o(σk)).

Writing m = qio(σi) + ri for each i, where 0 ≤ ri < o(σi), we have

e = σm = σr1
1 · · ·σ

rk
k .

Since the σri
i move different elements, we must have σri

i = e for each i. This
forces r1 = · · · = rk = 0. Hence o(σi)|m for each i and

m ≥ lcm(o(σ1), o(σ2), . . . , o(σk)).

(b) The order of a cycle permutation is equal to the length of the cycle. σ
is a disjoint product of cycles of length ≥ 2. If any one of these cycles has
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length divisible by q where q is a prime not equal to p, then q is a divisor of
the least common multiple of the lengths, hence the orders, of the disjoint
cycles in σ. So each disjoint cycle has length pi for some i. Since the least
common multiple of these lengths is p, each disjoint cycle has length p.

(c) σ = (1, 4, 5, 6, 7) has order 5, τ = (1, 2, 3) has order 3, στ = (1, 2, 3, 4, 5, 6, 7)
has order 7.
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