Proof of the Cauchy-Binet Theorem and the Matrix Tree Theorem

Cauchy-Binet Theorem: Assume $p \leq q$. Let $A = (a_{ij})$ be an $p \times q$ matrix, let $B = (b_{ij})$ be a $q \times p$ matrix, and write $AB = C = (c_{ij})$. Then

$$\det(AB) = \det(C_1, \dots, C_p) = \det(\sum_{i=1}^q b_{i1}A_i, \dots, \sum_{i=1}^q b_{ip}A_i) =$$

$$\sum_{1 \le i_1, \dots, i_p \le q} b_{i_11} \cdots b_{i_pp} \det(A_{i_1}, \dots, A_{i_p}) =$$

$$\sum_{1 \le i_1 < i_2 < \dots < i_p \le q} \sum_{\sigma \in \mathcal{S}_p} b_{i_{\sigma(1)}1} \cdots b_{i_{\sigma(p)}p} \det(A_{i_{\sigma(1)}}, \dots, A_{i_{\sigma(p)}}) =$$

$$\sum_{1 \le i_1 < i_2 < \dots < i_p \le q} \sum_{\sigma \in \mathcal{S}_p} b_{i_{\sigma(1)}1} \cdots b_{i_{\sigma(p)}p} \operatorname{sgn}(\sigma) \det(A_{i_1}, \dots, A_{i_p}) =$$

$$\sum_{I \le {\binom{[q]}{p}}} \det(A_I) \det(B_I)$$

where for a subset I of [q] of size p, A_I is the submatrix of A using the p columns from I and B_I is the submatrix of B using the p rows from I.

Counting spanning trees: Let G be a graph with vertex set $V = \{x_1, \ldots, x_n\}$ and edge set $E = \{e_1, \ldots, e_m\}$ where $m \ge n-1$. Then the number of spanning trees of G is

$$\sum_{H \in \binom{E}{n-1}} \chi(H \text{ is a spanning tree}).$$

Given the resemblance of this formula to the Cauchy-Binet Theorem, it should not be surprising that there is a determinant formula for this expression.

Matrix-Tree Theorem: Let

$$C = \left((-1)^{\chi(x_i = \min e_j)} \chi(x_i \in e_j) \right)$$

where $1 \leq i \leq n-1$ and $1 \leq j \leq m$. Then the number of spanning trees is $\det(CC^T)$.

Example:

 $\det(CC^T) = 8$

Spanning trees:

Proof of the Matrix-Tree Theorem: We have

$$\det(CC^T) = \sum_{I \in \binom{[m]}{n-1}} \det(C_I) \det(C_I^T) = \sum_{I \in \binom{[m]}{n-1}} \det(C_I)^2.$$

We will prove that

 $\det(C_I)^2 = \chi(\{e_i : i \in I\} \text{ is a spanning tree})$

for each $I \in {[m] \choose n-1}$.

Let $I \in {\binom{[m]}{n-1}}$ be given. Name the corresponding edges f_1, \ldots, f_{n-1} . Then the *ij*-entry of C_I is 0 if $x_i \notin f_j$ and is ± 1 if $x_i \in f_j$. These edges form a spanning tree if and only if they are connected and encompass n vertices.

Case 1: $\{f_1, \ldots, f_{n-1}\}$ does not incorporate all *n* vertices. If x_n is isolated then each column of C_I has a 1 and a -1 in it, so the sum of its columns is the 0 vector, so its columns are linearly dependent and det $(C_I) = 0$. If some other vertex x_k is isolated then row k in C_I is the 0 vector, which again implies det $(C_I) = 0$.

Case 2: $\{f_1, \ldots, f_{n-1}\}$ encompasses all *n* vertices but is not connected. Each component has at least two vertices. The sum of all the rows corresponding to vertices in a component not containing *n* is 0, hence the rows are not linearly independent and det $(C_I) = 0$.

Case 3: $\{f_1, \ldots, f_{n-1}\}$ incorporates all *n* vertices and is connected. The collection of edges forms a spanning tree. Clipping leaf vertices and edges, we can permute the rows and columns of C_I to produce a lower-triangular matrix with ± 1 in each diagonal entry. This implies $\det(C_I) = \pm 1$.