
Proof of the Cauchy-Binet Theorem and the Matrix Tree Theorem

Cauchy-Binet Theorem: Assume p ≤ q. Let A = (aij) be an p×q matrix,
let B = (bij) be a q × p matrix, and write AB = C = (cij). Then

det(AB) = det(C1, . . . , Cp) = det(

q∑
i=1

bi1Ai, . . . ,

q∑
i=1

bipAi) =

∑
1≤i1,...,ip≤q

bi11 · · · bipp det(Ai1 , . . . , Aip) =

∑
1≤i1<i2<···<ip≤q

∑
σ∈Sp

biσ(1)1 · · · biσ(p)p det(Aiσ(1) , . . . , Aiσ(p)) =

∑
1≤i1<i2<···<ip≤q

∑
σ∈Sp

biσ(1)1 · · · biσ(p)p sgn(σ) det(Ai1 , . . . , Aip) =

∑
I∈([q]p )

det(AI) det(BI)

where for a subset I of [q] of size p, AI is the submatrix of A using the p
columns from I and BI is the submatrix of B using the p rows from I.

Counting spanning trees: LetG be a graph with vertex set V = {x1, . . . , xn}
and edge set E = {e1, . . . , em} where m ≥ n− 1. Then the number of span-
ning trees of G is ∑

H∈( E
n−1)

χ(H is a spanning tree).

Given the resemblance of this formula to the Cauchy-Binet Theorem, it
should not be surprising that there is a determinant formula for this ex-
pression.

Matrix-Tree Theorem: Let

C = ((−1)χ(xi=min ej)χ(xi ∈ ej))

where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m. Then the number of spanning trees is
det(CCT ).
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Example:

G =

1 2

3 54

1

2

3

4 5

6

C =


−1 0 0 −1 0 0
1 −1 0 0 −1 0
0 0 −1 1 1 0
0 1 1 0 0 −1


det(CCT ) = 8

Spanning trees:

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

Proof of the Matrix-Tree Theorem: We have

det(CCT ) =
∑

I∈( [m]
n−1)

det(CI) det(C
T
I ) =

∑
I∈( [m]

n−1)

det(CI)
2.

We will prove that

det(CI)
2 = χ({ei : i ∈ I} is a spanning tree)

for each I ∈
(
[m]
n−1

)
.
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Let I ∈
(
[m]
n−1

)
be given. Name the corresponding edges f1, . . . , fn−1. Then

the ij-entry of CI is 0 if xi 6∈ fj and is ±1 if xi ∈ fj. These edges form a
spanning tree if and only if they are connected and encompass n vertices.

Case 1: {f1, . . . , fn−1} does not incorporate all n vertices. If xn is isolated
then each column of CI has a 1 and a −1 in it, so the sum of its columns
is the 0 vector, so its columns are linearly dependent and det(CI) = 0. If
some other vertex xk is isolated then row k in CI is the 0 vector, which again
implies det(CI) = 0.

Case 2: {f1, . . . , fn−1} encompasses all n vertices but is not connected. Each
component has at least two vertices. The sum of all the rows corresponding
to vertices in a component not containing n is 0, hence the rows are not
linearly independent and det(CI) = 0.

Case 3: {f1, . . . , fn−1} incorporates all n vertices and is connected. The
collection of edges forms a spanning tree. Clipping leaf vertices and edges,
we can permute the rows and columns of CI to produce a lower-triangular
matrix with ±1 in each diagonal entry. This implies det(CI) = ±1.
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