Graphing and constrained optimization using properties of real symmetric matrices

1. Graph $a x^{2}+b x y+c y^{2}=1$. In matrix form, this reads

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=[1] .
$$

We have already proved that for each symmetric matrix A there is a rotation matrix C of eigenvectors of A such that $A=C D C^{T}$ where D is a diagonal matrix. Making the substitution we obtain

$$
\left[\begin{array}{ll}
x & y
\end{array}\right] C\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] C^{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]=[1]
$$

Writing

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=C^{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

we obtain

$$
\left[\begin{array}{ll}
X & Y
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=[1] .
$$

In other words,

$$
\lambda_{1} X^{2}+\lambda_{2} Y^{2}=1
$$

This is much easier to graph. Since

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=C\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

and C is a rotation matrix, all we have to do is identify the angle of rotation θ and rotate the $X Y$ graph by θ to obtain the $x y$ graph.
Example: Graph $x^{2}+3 x y+5 y^{2}=1$. The eigenvalues of $\left[\begin{array}{cc}1 & 3 / 2 \\ 3 / 2 & 5\end{array}\right]$ are $\lambda_{1}=\frac{1}{2}$ and $\lambda_{2}=\frac{11}{2}$. Eigenspace bases are $\left\{\left[\begin{array}{c}3 \\ -1\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$. This yields

$$
C=\left[\begin{array}{cc}
3 / \sqrt{10} & 1 / \sqrt{10} \\
-1 / \sqrt{10} & 3 \sqrt{10}
\end{array}\right]
$$

Identifying this with

$$
R(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

yields $\cos \theta=\frac{3}{\sqrt{10}}, \sin \theta=-\frac{1}{\sqrt{10}}, \tan \theta=-\frac{1}{3}, \theta=\tan ^{-1} \frac{-1}{3}=-0.321751$ radians or -18.4349 degrees. So we graph $\frac{1}{2} X^{2}+\frac{11}{2} Y^{2}=1$, then rotate -18.4349 degrees. For example, one solution to $\frac{1}{2} X^{2}+\frac{11}{2} Y^{2}=1$ is $X=\sqrt{2}$, $Y=0$. This yields solution

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=C\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{cc}
3 / \sqrt{10} & 1 / \sqrt{10} \\
-1 / \sqrt{10} & 3 \sqrt{10}
\end{array}\right]\left[\begin{array}{c}
\sqrt{2} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}}
\end{array}\right] .
$$

We have

$$
(3 / \sqrt{5})^{2}+3(3 / \sqrt{5})(-1 / \sqrt{5})+5(-1 / \sqrt{5})^{2}=1
$$

Graph of $\frac{1}{2} X^{2}+\frac{11}{2} Y^{2}=1$:

Graph of $x^{2}+3 x y+5 y^{2}=1$:

2. Find the maximum and minimum value of $x^{2}+3 x y+5 y^{2}$ subject to $x^{2}+y^{2}=1$. Given that (x, y) is related to (X, Y) by a rotation, $x^{2}+y^{2}=1$
is equivalent to $X^{2}+Y^{2}=1$. So equivalently we can find the maximum of $\frac{1}{2} X^{2}+\frac{11}{2} Y^{2}$ subject to $X^{2}+Y^{2}=1$. Writing $Y^{2}=1-X^{2}$ we want the maximum of $\frac{11}{2}-5 X^{2}$ where $|X| \leq 1$. The maximum is $\frac{11}{2} u \operatorname{sing}(X, Y)=$ $(0,1),(x, y)=(1 / \sqrt{10}, 3 / \sqrt{10})$. The minimum is $\frac{1}{2}$ using $(X, Y)=(1,0)$, $(x, y)=(3 / \sqrt{10},-1 / \sqrt{10})$.

