Final Exam, Math 641, Fall 2012

1. Let $K \subseteq F$ be a field extension and let $u \in F$. Let L be the intersection of all subfields L of F such that $K \subseteq L$ and $u \in L$. Let

$$
M=\left\{f(u) g(u)^{-1} \in F: f(x) \in K[x], g(x) \in K[x], g(u) \neq 0\right\} .
$$

Prove that $L=M$. Hint: Prove that M is a field that contains both K and u. Therefore $L \subseteq M$. Explain why M has to be a subset of L, therefore $L=M$.
2. Let $K \subseteq F$ be a field extension and let $u \in F$. Assume that u is algebraic over K. Let L be the intersection of all subfields L of F such that $K \subseteq L$ and $u \in L$. Let

$$
M=\{f(u) \in F: f(x) \in K[x]\} .
$$

Prove that $L=M$. Use the hint for Problem 1 .
3. Let $K=\mathbb{Q}, F=\mathbb{Q}\left[2^{1 / 3}, \xi\right]$ where $\xi=-(1 / 2)+(\sqrt{3} / 2) i$ is a primitive $3^{\text {rd }}$ root of unity. Using the explicit form of Galois group which I distributed in class, prove that $\operatorname{Gal}_{K}(F) \cong D_{3}$.
4. Let K and F be as in Problem 3. Let $u=2^{1 / 3}+2^{2 / 3}+\xi$. Find $\operatorname{irr}_{\mathbb{Q}}(u)$. Flesh out the following outline of the solution:

Write $^{\operatorname{Gal}_{K}(F)}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$. Form the polynomial

$$
p(x)=\prod_{i=1}^{6}\left(x-f_{i}(u)\right) .
$$

Then $p(x) \in \mathbb{Q}[x]$ and $p(u)=0$, therefore $\operatorname{irr}_{\mathbb{Q}}(u) \mid p(x)$. Since u does not belong to any proper subfield of $F, p(x)=\operatorname{irr}_{\mathbb{Q}}(u)$. Explain why this last sentence constitutes a valid argument and prove carefully that u does not belong to any of the proper subfields of F, which are computed in the Galois Correspondence Class Handout.
5. Let $K=\mathbb{Q}, F=\mathbb{Q}\left[3^{1 / 4}, i\right]$.
(a) Show that F is a splitting field over K.
(b) Work out the Galois Correspondence between intermediate fields L such that $K \subseteq L \subseteq F$ and subgroups H of $\operatorname{Gal}_{K}(F)$ as I did in the class handout, identifying any normal subfield extensions and normal subgroups. Note that
to prove that a subfield is a normal field extension it suffices to show that it is a splitting field of an appropriate polynomial in $K[x]$, and to prove that a subgroup is normal it simply must correspond under the priming operation to a normal subfield extension. Moreover, to prove that a subfield L is not a normal field extension one must identify an irreducible polynomial in $K[x]$ with at least one but not all roots in L.
6. Given a generic non-zero $a+b 2^{1 / 3}+c 2^{2 / 3} \in \mathbb{Q}\left[2^{1 / 3}\right]$ where $a, b, c \in \mathbb{Q}$, find $f, g, h \in \mathbb{Q}$ such that $\left(a+b 2^{1 / 3}+c 2^{2 / 3}\right)^{-1}=f+g 2^{1 / 3}+h 2^{2 / 3}$. Each of the coefficients f, g, h should be expressed in terms of a, b, and c. Flesh out the following outline of the solution (choosing either Method I or Method II):
Method I: The field is isomorphic to the quotient ring $\mathbb{Q}[x] / I$ where $I=$ $\left(x^{3}-2\right)$. The typical element in the quotient ring is $I+a x^{2}+b x+c$ where $a, b, c \in \mathbb{Q}$. The division algorithm yields

$$
x^{3}-2=\left(a x^{2}+b x+c\right) q(x)+r(x)
$$

where the polynomials $q(x)$ and $r(x)$ have coefficients which are all expressions in a, b, c and $r(x)$ has degree ≤ 1. Hence

$$
\left(I+a x^{2}+b x+c\right)(I+q(x))=I-r(x) .
$$

The division algorithm yields

$$
x^{3}-2=r(x) s(x)+t
$$

where the polynomials $r(x), s(x)$, and t have coefficients which are all expressions in a, b, c. Hence

$$
(I-r(x))(I+s(x))=I+t
$$

Putting everything together,

$$
\left(I+a x^{2}+b x+c\right)(I+q(x))(I+s(x))=I+t
$$

therefore

$$
\left(I+a x^{2}+b x+c\right)^{-1}=(I+q(x))(I+s(x))\left(I+\frac{1}{t}\right)=I+h x^{2}+g x+f
$$

where the rational numbers f, g, h all have explicit formulas in terms of a, b, and c. Hence

$$
\left(a+b 2^{1 / 3}+c 2^{2 / 3}\right)^{-1}=f+g 2^{1 / 3}+h 2^{2 / 3}
$$

Method II: Let K and F be as in Problem 3, with $\operatorname{Gal}_{K}(F)=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$. Let

$$
u=\prod_{i=1}^{6} f_{i}\left(a+b 2^{1 / 3}+c 2^{2 / 3}\right)
$$

Then u is a rational number. Assuming that $f_{1}=e$, we have

$$
\left(a+b 2^{1 / 3}+c 2^{2 / 3}\right)^{-1}=\frac{1}{u} \prod_{i=2}^{6} f_{i}\left(a+b 2^{1 / 3}+c 2^{2 / 3}\right)
$$

Using complex conjugation as necessary, show that this product can be expressed as a linear combination $1,2^{1 / 3}$, and $2^{2 / 3}$ using rational coefficients.

