Math 641 Final Exam Solutions Fall 2012

1. Solution: Let

M = {f(u)g(u)" : f(z) € K[2], g(z) € K[z], g(u) # 0}.

Since each f(u) and g(u) belongs to F' by closure of addition and multipli-
cation in F';, M C F. It clearly contains K and u. It is a field: it is easy to
demonstrate that M is closed with respect to addition and multiplication,
contains an additive and a multiplicative identity, and contains additive and
multiplicative inverses. Since L is the intersection of all fields in F’ containing
K and u, it is a subset of each, so it is a subset of M. Since L is a field
containing both K and u, by closure of addition and multiplication it must
contain all the expressions in M. Hence M C L. Therefore L = M.

2. Solution: Let

M = {f(w)g(u) ™" : f(2) € K[z], g(z) € Kla], g(u) #0}.

M is a subring of F' that contains both K and u. We must show that it is a
field. Let f(x) € K[z] be given such that f(u) # 0. We will show that f(u)
has a multiplicative inverse in M. Let p(z) = irrgx(u). Let d(x) be the monic
polynomial of least degree in the set

S = A{a(x)p(x) + b(x) f(x) : a(x), b(z) € K[z]}.

We showed earlier in the course that d(z)|p(z) and d(z)|f(z) by a division
algorithm argument. Since d(z) and p(z) are both monic and p(z) is irre-
ducible, we must have d(x) = 1 or d(x) = p(x). The latter case is ruled out
because p(z) cannot divide f(x) by virtue of p(u) = 0 and f(u) # 0. There-
fore d(x) = 1 and there are polynomials a(z) and b(z) in K[z] such that
a(x)p(z) +b(z)f(x) = 1. Evaluating at u we obtain b(u) f(u) = 1. Therefore
f(u)™ = b(u) € M. Now that we know that M is a field, we must have
L C M since L is a subset of every field containing both K and u. Since
L contains both K and u, it contains all the expressions in M by closure of
addition and multiplication in L. Therefore M C L. Hence L = M.

An alternative solution is to show that M = K|x]/(p(z)). The quotient ring
is a field since (p(x)) is maximal by virtue of the fact that p(x) is irreducible.
Since M is isomorphic to a field, it is a field. But I like the direct construction
of the inverse above.



3. Solution: s = (2/3¢,€), t = (2/3,€?) satisfies o(s) = 3, o(t) = 2,
ts = 5%t = (21/3¢2 ¢2).

4. Solution: A Mathematica calculation (see the notebook online) yields

p(z) = 127 + 1237 + 62 — 292° — 62 + 32° + 2.

We argue that this polynomial is irreducible. Reason: if irrg(u) has degree
less than 6 then [Qu] : Q] < 6, therefore Q[u] is equal to one of the proper
intermediate fields in the splitting field extension Q C Q[2'/3,¢] which we
calculated in the Galois Correspondence handout. This forces u to belong to
one of these. But it doesn’t (proof below). Therefore irrg(u) has degree 6.
Since it is a divisor of p(x), it is equal to p(z).

u ¢ QQ: Because u is not a real number.
u € Q[2'/3]: Because u is not a real number.

u & Q[E]: If u=a+ b€+ c£? then

V3 1223 4 ¢ a4 bE+ €2 =0.
Applying complex conjugation to this,

V3 193 12 a4 b€ + £ =0.
Adding, and using £ + £2 = —1, we obtain

2213 42923 1 —2a—b—c=0.
In other words,

(=1 —2a —b—c)1+ 223 +222/3 =

which contradicts the fact that 1,23, 2%/3 are linearly independent as basis
elements of Q[2/?].

u & Q[2Y3¢): If u = a + b2'/3¢ + 2*/3¢2 then
/3 4 923 4 ¢ — q — b2Y3¢ — 22/3¢2 = 0.
Substituting ¢2 = —1 — ¢ and rearranging slightly, we obtain

(2'3 4 (1 +¢)22% —a) + £(1 — b2'3 + 2%3) = 0.
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Since ¢ is not a real number we must have 1 — b2'/3 + ¢2/3 = 0. However, the
latter equation contradicts the fact that 1,2'/3,2%% are linearly independent
as basis elements of Q[2!/3].

5. Solution: (a) Q[3'/4i] = Q[31/4, —31/4 31/4i —3Y/4] = Q[roots of z* — 3].

(b) First we compute the Galois Group. irrg(3Y/4) = z* — 3, so valid images

of 31/* are 31/4 —31/4 314 —3M4 irrg (i) = 2% 4 1, which is fixed under
all priming operations, so valid images of i are roots of 22 + 1, namely 7, —i.
So
Galg(Q[3'4,4]) =
{<31/47 7’)7 (_31/47 2)7 (31/4i7 Z)? (_31/47:> Z)?
(31/47 _2)7 <_31/47 _Z)v (31/41.7 _2)7 (_31/4i7 _Z)}

See the scanned documents for the Galois Correspondence chart. The sub-
fields Q[3'/4,4], Q[3'/2,4], Q[i], Q[3'/%i], Q[3'/2], and Q are all normal exten-
sions of Q as splitting fields of z* — 3, (z? +3)(z* + 1), 22+ 1, 2* + 3, 2* - 3,
and x — 1, respectively. Since the polynomial z* — 3 is irreducible in Q[z]

and has at least one but not all roots in both Q[3'/4] and Q[3'/44], these two
subfields are not normal extensions of Q.

6. Solution: This is a nice illustration of Problem 2 of this exam. A
Mathematica calculation (see the two notebooks online) yields

a* —2bc 2% — a621/3 n b’ — aC 23

1/3 2/3\—1 _
(a4 b27/° 4 c2°7) y y y

where
d = a® + 2b° + 4¢® — 6abc.
For example,

—11 16 1
1 2.21/3 3.22/3 —1 — _21/3 _22/3'
(1+ * ) 89 * 89 * 89

Interestingly, our formula implies that the only rational solution to the equa-
tion a3 + 2b% 4+ 4¢3 = 6abc is a = b = ¢ = 0.



