Math 641 Final Exam Solutions Fall 2012

1. Solution: Let

$$
M=\left\{f(u) g(u)^{-1}: f(x) \in K[x], g(x) \in K[x], g(u) \neq 0\right\} .
$$

Since each $f(u)$ and $g(u)$ belongs to F by closure of addition and multiplication in $F, M \subseteq F$. It clearly contains K and u. It is a field: it is easy to demonstrate that M is closed with respect to addition and multiplication, contains an additive and a multiplicative identity, and contains additive and multiplicative inverses. Since L is the intersection of all fields in F containing K and u, it is a subset of each, so it is a subset of M. Since L is a field containing both K and u, by closure of addition and multiplication it must contain all the expressions in M. Hence $M \subseteq L$. Therefore $L=M$.
2. Solution: Let

$$
M=\left\{f(u) g(u)^{-1}: f(x) \in K[x], g(x) \in K[x], g(u) \neq 0\right\}
$$

M is a subring of F that contains both K and u. We must show that it is a field. Let $f(x) \in K[x]$ be given such that $f(u) \neq 0$. We will show that $f(u)$ has a multiplicative inverse in M. Let $p(x)=\operatorname{irr}_{K}(u)$. Let $d(x)$ be the monic polynomial of least degree in the set

$$
S=\{a(x) p(x)+b(x) f(x): a(x), b(x) \in K[x]\} .
$$

We showed earlier in the course that $d(x) \mid p(x)$ and $d(x) \mid f(x)$ by a division algorithm argument. Since $d(x)$ and $p(x)$ are both monic and $p(x)$ is irreducible, we must have $d(x)=1$ or $d(x)=p(x)$. The latter case is ruled out because $p(x)$ cannot divide $f(x)$ by virtue of $p(u)=0$ and $f(u) \neq 0$. Therefore $d(x)=1$ and there are polynomials $a(x)$ and $b(x)$ in $K[x]$ such that $a(x) p(x)+b(x) f(x)=1$. Evaluating at u we obtain $b(u) f(u)=1$. Therefore $f(u)^{-1}=b(u) \in M$. Now that we know that M is a field, we must have $L \subseteq M$ since L is a subset of every field containing both K and u. Since L contains both K and u, it contains all the expressions in M by closure of addition and multiplication in L. Therefore $M \subseteq L$. Hence $L=M$.
An alternative solution is to show that $M \cong K[x] /(p(x))$. The quotient ring is a field since $(p(x))$ is maximal by virtue of the fact that $p(x)$ is irreducible. Since M is isomorphic to a field, it is a field. But I like the direct construction of the inverse above.
3. Solution: $s=\left(2^{1 / 3} \xi, \xi\right), t=\left(2^{1 / 3}, \xi^{2}\right)$ satisfies $o(s)=3, o(t)=2$, $t s=s^{2} t=\left(2^{1 / 3} \xi^{2}, \xi^{2}\right)$.
4. Solution: A Mathematica calculation (see the notebook online) yields

$$
p(x)=127+123 x+6 x^{2}-29 x^{3}-6 x^{4}+3 x^{5}+x^{6} .
$$

We argue that this polynomial is irreducible. Reason: if $\operatorname{irr}_{\mathbb{Q}}(u)$ has degree less than 6 then $[\mathbb{Q}[u]: \mathbb{Q}]<6$, therefore $\mathbb{Q}[u]$ is equal to one of the proper intermediate fields in the splitting field extension $\mathbb{Q} \subseteq \mathbb{Q}\left[2^{1 / 3}, \xi\right]$ which we calculated in the Galois Correspondence handout. This forces u to belong to one of these. But it doesn't (proof below). Therefore $\operatorname{irr}_{\mathbb{Q}}(u)$ has degree 6. Since it is a divisor of $p(x)$, it is equal to $p(x)$.
$u \notin \mathbb{Q}$: Because u is not a real number.
$u \notin \mathbb{Q}\left[2^{1 / 3}\right]$: Because u is not a real number.
$u \notin \mathbb{Q}[\xi]:$ If $u=a+b \xi+c \xi^{2}$ then

$$
2^{1 / 3}+2^{2 / 3}+\xi-a+b \xi+c \xi^{2}=0
$$

Applying complex conjugation to this,

$$
2^{1 / 3}+2^{2 / 3}+\xi^{2}-a+b \xi^{2}+c \xi=0 .
$$

Adding, and using $\xi+\xi^{2}=-1$, we obtain

$$
22^{1 / 3}+22^{2 / 3}-1-2 a-b-c=0
$$

In other words,

$$
(-1-2 a-b-c) 1+22^{1 / 3}+22^{2 / 3}=0,
$$

which contradicts the fact that $1,2^{1 / 3}, 2^{2 / 3}$ are linearly independent as basis elements of $\mathbb{Q}\left[2^{1 / 3}\right]$.

$$
\begin{aligned}
& u \notin \mathbb{Q}\left[2^{1 / 3} \xi\right]: \text { If } u=a+b 2^{1 / 3} \xi+c 2^{2 / 3} \xi^{2} \text { then } \\
& \qquad 2^{1 / 3}+2^{2 / 3}+\xi-a-b 2^{1 / 3} \xi-c 2^{2 / 3} \xi^{2}=0 .
\end{aligned}
$$

Substituting $\xi^{2}=-1-\xi$ and rearranging slightly, we obtain

$$
\left(2^{1 / 3}+(1+c) 2^{2 / 3}-a\right)+\xi\left(1-b 2^{1 / 3}+c 2^{2 / 3}\right)=0 .
$$

Since ξ is not a real number we must have $1-b 2^{1 / 3}+c^{2 / 3}=0$. However, the latter equation contradicts the fact that $1,2^{1 / 3}, 2^{2 / 3}$ are linearly independent as basis elements of $\mathbb{Q}\left[2^{1 / 3}\right]$.
5. Solution: (a) $\mathbb{Q}\left[3^{1 / 4}, i\right]=\mathbb{Q}\left[3^{1 / 4},-3^{1 / 4}, 3^{1 / 4} i,-3^{1 / 4}\right]=\mathbb{Q}\left[\right.$ roots of $\left.x^{4}-3\right]$.
(b) First we compute the Galois Group. $\operatorname{irr}_{\mathbb{Q}}\left(3^{1 / 4}\right)=x^{4}-3$, so valid images of $3^{1 / 4}$ are $3^{1 / 4},-3^{1 / 4}, 3^{1 / 4} i,-3^{1 / 4} i$. $\operatorname{irr}_{\mathbb{Q}\left[3^{1 / 4}\right]}(i)=x^{2}+1$, which is fixed under all priming operations, so valid images of i are roots of $x^{2}+1$, namely $i,-i$. So

$$
\begin{gathered}
\operatorname{Gal}_{\mathbb{Q}}\left(\mathbb{Q}\left[3^{1 / 4}, i\right]\right)= \\
\left\{\left(3^{1 / 4}, i\right),\left(-3^{1 / 4}, i\right),\left(3^{1 / 4} i, i\right),\left(-3^{1 / 4} i, i\right)\right. \\
\left.\left(3^{1 / 4},-i\right),\left(-3^{1 / 4},-i\right),\left(3^{1 / 4} i,-i\right),\left(-3^{1 / 4} i,-i\right)\right\} .
\end{gathered}
$$

See the scanned documents for the Galois Correspondence chart. The subfields $\mathbb{Q}\left[3^{1 / 4}, i\right], \mathbb{Q}\left[3^{1 / 2}, i\right], \mathbb{Q}[i], \mathbb{Q}\left[3^{1 / 2} i\right], \mathbb{Q}\left[3^{1 / 2}\right]$, and \mathbb{Q} are all normal extensions of \mathbb{Q} as splitting fields of $x^{4}-3,\left(x^{2}+3\right)\left(x^{2}+1\right), x^{2}+1, x^{2}+3, x^{2}-3$, and $x-1$, respectively. Since the polynomial $x^{4}-3$ is irreducible in $\mathbb{Q}[x]$ and has at least one but not all roots in both $\mathbb{Q}\left[3^{1 / 4}\right]$ and $\mathbb{Q}\left[3^{1 / 4} i\right]$, these two subfields are not normal extensions of \mathbb{Q}.
6. Solution: This is a nice illustration of Problem 2 of this exam. A Mathematica calculation (see the two notebooks online) yields

$$
\left(a+b 2^{1 / 3}+c 2^{2 / 3}\right)^{-1}=\frac{a^{2}-2 b c}{d}+\frac{2 c^{2}-a b}{d} 2^{1 / 3}+\frac{b^{2}-a c}{d} 2^{2 / 3}
$$

where

$$
d=a^{3}+2 b^{3}+4 c^{3}-6 a b c
$$

For example,

$$
\left(1+2 \cdot 2^{1 / 3}+3 \cdot 2^{2 / 3}\right)^{-1}=\frac{-11}{89}+\frac{16}{89} 2^{1 / 3}+\frac{1}{89} 2^{2 / 3}
$$

Interestingly, our formula implies that the only rational solution to the equation $a^{3}+2 b^{3}+4 c^{3}=6 a b c$ is $a=b=c=0$.

