Math 223
Week 8 Solutions to Selected Problems

Section 12.6

25. The cross-sections of the paraboloid $z=4 x^{2}+4 y^{2}$ that are parallel to the $x y$-plane are circles of radius $\frac{\sqrt{z}}{2}$. The largest one in the paraboloid occurs at $z=a$. For each x and y in this region, z rizes from the surface of the paraboloid to a. So the region bounded by the paraboloid and the plane can be described as all (x, y, z) where $x=r \cos \theta, y=r \sin \theta, 0 \leq \theta \leq 2 \pi$, $0 \leq r \leq \frac{\sqrt{a}}{2}$, and $4 r^{2} \leq z \leq a$. Hence both mass and center of mass can be computed by evaluating integrals of the form

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\sqrt{a}}{2}} \int_{4 r^{2}}^{a} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

