Math 223
Week 7 Solutions to Selected Problems

Section 12.3

23. The region of integration includes all $x \in[-3,3]$. Given any one value of x in this range, y varies from 0 to $\sqrt{9-x^{2}}$. So the region of integration is all points within and on the circle of radius 3 centered at the origin with $y \geq 0$. In terms of polar coordinates, θ ranges from 0 to π and r ranges from 0 to 3. So the polar coordinates evaluation of the double integral is

$$
\int_{0}^{\pi} \int_{0}^{3} r \sin \left(r^{2}\right) d r d \theta
$$

The antiderivative of $r \sin \left(r^{2}\right)$ is $-\frac{1}{2} \cos \left(r^{2}\right)$ using the u-substitution $u=r^{2}$, $d u=2 r d r$.
25. The integral $\int_{0}^{1} \int_{y}^{\sqrt{2-y^{2}}}(x+y) d x d y$ describes a Type II region which is bounded by the lines $y=0$ and $y=1$. For a given value of y between 0 and $1, x$ is ranging from a minimum value of y to a maximum value of $\sqrt{2-y^{2}}$. Therefore the left hand boundary is given by the equation $x=y$ and the right hand boundary is given by the equation $x=\sqrt{2-y^{2}}$. The region can be described as all points inside the circle of radius $\sqrt{2}$ and below the line $y=x$ and above the x-axis in the first quadrant. The angles in this region vary from 0 to $\frac{\pi}{4}$, and given any particular angle in this range, the radius is ranging from 0 to $\sqrt{2}$. So the integral in polar coordinates is

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{2}} r^{2} \cos \theta+r^{2} \sin \theta d r d \theta=\frac{2 \sqrt{2}}{3}
$$

27. Let the surface of the pool be described by the equation $x^{2}+y^{2}=20^{2}$ in the $x y$-plane where $z=0$. Let south be in the direction of the positive x-axis and let east be in the direction of the positive y-axis (viewing the surface of the pool in the $x y z$ coordinate system). Then the furthest point south on the surface of the pool is the point $(20,0,0)$ and the furthest point north on the surface of the pool is $(-20,0,0)$. The base of the pool can be described as a plane that passes through the three points $(-20,0,-2),(0,20,-4.5)$, $(20,0,-7)$. The equation of this plane is $a x+b y+c z=d$. We may as well set $d=1$, since we know the plane does not pass through the origin.

Plugging in these three points we quickly find that the equation of the plane is $z=-\frac{x+36}{8}$. So the volume of the pool is

$$
\frac{1}{8} \iint_{R} x+36 d A
$$

where R is the region $\left\{(x, y): x^{2}+y^{2} \leq 20^{2}\right\}$. In polar coordinates the region R can be expressed as $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 20$. so the volume of the pool is

$$
V=\frac{1}{8} \int_{0}^{2 \pi} \int_{0}^{20} r^{2} \cos \theta+36 r d r d \theta=1800 \pi \text { cubic feet. }
$$

Section 12.4

11. We are told that mass density is $\rho(x, y)=k y$ at position (x, y). The region of integration in polar coordinates can be described by $0 \leq \theta \leq \frac{\pi}{2}$, $0 \leq r \leq 1$. So the mass of this object is

$$
\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r \cdot k r \sin \theta d r d \theta=\frac{k}{3}
$$

The x-coordinate of the center of mass is the integral of x times the mass density over the mass, or

$$
\left(\frac{k}{3}\right)^{-1} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r \cdot r \cos \theta \cdot k r \sin \theta d r d \theta=\left(\frac{k}{3}\right)^{-1}\left(\frac{k}{8}\right)=\frac{3}{8} .
$$

The y-coordinate of the center of mass is the integral of y times the mass density over the mass, or

$$
\left(\frac{k}{3}\right)^{-1} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r \cdot r \sin \theta \cdot k r \sin \theta d r d \theta=\left(\frac{k}{3}\right)^{-1}\left(\frac{k \pi}{16}\right)=\frac{3 \pi}{16}
$$

18. We have

$$
I_{x}=\int_{0}^{2} \int_{0}^{2} y^{2}(1+0.1 x) d y d x=5.86667
$$

and

$$
I_{y}=\int_{0}^{2} \int_{0}^{2} x^{2}(1+0.1 x) d y d x=6.13333
$$

so it's more difficult to rotate the blade about the y-axis.

