Section 12.2

17. The base of the region, I assume, is in the $x y$-plane where $z=0$. In this region, x varies from 0 to 1 , and for a given value of x, y varies from x^{4} to x. The height above the point $(x, y, 0)$ is $z=x+2 y$. Putting this all together, the volume is

$$
V=\int_{0}^{1} \int_{x^{4}}^{x} x+2 y d y d x=\frac{7}{18} .
$$

27. This solid intersects the region of the $x y$-plane bounded by $y=1-x^{2}$ and $y=x^{2}-1$. This can be described as all $(x, y, 0)$ where $-1 \leq x \leq 1$ and, for a given value of x in this range, $x^{2}-1 \leq y \leq 1-x^{2}$. (You have to draw these two parabolas and calculate the intersection points to see this.) To estimate the volume of the solid, cut this region into rectangles of dimensions $\Delta x \Delta y$, pick a point $\left(x_{i}^{*}, y_{i}^{*}\right)$ in the $i^{\text {th }}$ rectangle, and extend a line through this point, perpendicular to the $x y$ plane, that extends between the two planes $x+y+z=2$ and $2 x+2 y-z+10=0$. To get the approximate volume of the rectangular solid this suggests, multiply the area of the rectangle by the distance between the two z-coordinates. This line intersects the first plane in the point $\left(x_{i}^{*}, y_{i}^{*}, 2-x_{i}^{*}-y_{i}^{*}\right)$ and the second plane in the point $\left(x_{i}^{*}, y_{i}^{*}, 2 x_{i}^{*}+2 y_{i}^{*}+10\right)$, and the distance between these points is $3 x_{i}^{*}+3 y_{i}^{*}+8$. So the approximate volume is $\sum\left(3 x_{i}^{*}+3 y_{i}^{*}+8\right) \Delta x \Delta y$. The exact volume is $\int_{\text {So }} \int_{R} 3 x+3 y+8 d A$, where R is $\left\{(x, y):-1 \leq x \leq 1, x^{2}-1 \leq y \leq 1-x^{2}\right\}$.

$$
V=\int_{-1}^{1} \int_{x^{2}-1}^{1-x^{2}} 3 x+3 y+8 d y d x=\frac{64}{3} .
$$

39. The region of integration is bounded by $y=0$ and $y=3$. For a given value of y, x ranges from y^{2} to 9 . Graphing this information we can see that the region of integration is bounded by $y=0, y=\sqrt{x}, x=0$ and $x=9$. So the type I description of this region is $0 \leq x \leq 9,0 \leq y \leq \sqrt{x}$. Hence the double integral is equal to

$$
\begin{gathered}
\int_{0}^{9} \int_{0}^{\sqrt{x}} y \cos \left(x^{2}\right) d y d x=\left.\int_{0}^{9} \frac{y^{2}}{2} \cos \left(x^{2}\right)\right|_{0} ^{\sqrt{x}} d x= \\
\frac{1}{2} \int_{0}^{9} x \cos \left(x^{2}\right) d x
\end{gathered}
$$

Now use the u-substitution $u=x^{2}$.

