Selected Solutions to Homework 2 Problems

Section 10.9

8. Given $r(t)=(2 \cos t, 3 t, 2 \sin t)$, velocity is $r^{\prime}(t)=(-2 \sin t, 3,2 \cos t)$, speed is $\left\|r^{\prime}(t)\right\|=\sqrt{13}$, and acceleration is $r^{\prime \prime}(t)=(-2 \cos t, 0,-2 \sin t)$.
9. $r(t)=\left(t^{2}, 5 t, t^{2}-16 t\right), r^{\prime}(t)=(2 t, 5,2 t-16)$, speed $=\frac{d s}{d t}=\left|r^{\prime}(t)\right|=$ $\sqrt{4 t^{2}+25+4 t^{2}-64 t+256}=\sqrt{8 t^{2}-64 t+281}$, rate of change of speed is $\frac{d^{2} s}{d s^{2}}=\left(\sqrt{8 t^{2}-64 t+281}\right)^{\prime}=\frac{1}{2}\left(8 t^{2}-64 t+281\right)^{-1 / 2}(16 t-64)$, when speed is minimized its rate of change is zero, which occurs when $16 t-64=0$ or $t=4$.
10. Let $r(t)=(x(t), y(t))$ be the position of the shell at time t second after firing. Starting with $r^{\prime \prime}(t)=(0,-9.81)$, which we take as an axiom (acceleration due to gravity is 9.81 meters per second per second towards earth), we have $r^{\prime}(t)=(0,-9.81) t+C$ where C is a vector constant. Given that muzzle speed is v_{0} meters per second at time zero, then $r^{\prime}(0)=$ $v_{0}\left(\cos 30^{\circ}, \sin 30^{\circ}\right)=v_{0}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. This yields $C=v_{0}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. So now we have $r^{\prime}(t)=(0,-9.81) t+v_{0}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Therefore $r(t)=(0,-4.905) t^{2}+v_{0} t\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)+D$ where D is a vector constant. Assuming $r(0)=(0,0)$, this implies $D=(0,0)$. Hence $r(t)=(0,-4.905) t^{2}+v_{0} t\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. We are told that maximum height of the shell is 500 meters. Translated into mathematical terms, this says that if T is the time at which maximum height is achieved, then $y(T)=500$ when $y^{\prime}(T)=0$. This yields two equations:

$$
\begin{aligned}
-4.905 T^{2}+\frac{v_{0} T}{2} & =500 \\
-9.81 T+\frac{v_{0}}{2} & =0
\end{aligned}
$$

The second equation tells us that we can replace $\frac{v_{0}}{2}$ in the first equation by 9.81T. Making this substitution, the first equation says

$$
\begin{gathered}
-4.905 T^{2}+9.81 T^{2}=500 \\
4.905 T^{2}=500 \\
T=\sqrt{\frac{500}{4.905}}=10.0964
\end{gathered}
$$

So maximum height occurs a little later than 10 seconds into the flight. This implies

$$
\frac{v_{0}}{2}=9.81 T=99.0454
$$

therefore $v_{0}=198.091$ meters per second.
23. Done in class.
24. $r^{\prime \prime}(t)=(0,-32)$, hence $r^{\prime}(t)=(0,-32) t+(a, b)$. The initial conditions say $r^{\prime}(0)$ has length 115 and angle 50 degrees, therefore $(a, b)=r^{\prime}(0)=$ $\left(115 \cos 50^{\circ}, 115 \sin 50^{\circ}\right)=(73.9,88.1)$. Hence $r^{\prime}(t)=(0,-32) t+(73.9,88.1)$. Now we obtain $r(t)=(0,-32) \frac{t^{2}}{2}+(73.9,88.1) t+(p, q)$. The initial conditions say $r(0)=(0,3)$, which implies $(p, q)=(0,3)$ and $r(t)=r(t)=(0,-32) \frac{t^{2}}{2}+$ $(73.9,88.1) t+(0,3)=\left(73.9 t,-16 t^{2}+88.1 t+3\right)$. The ball travels 400 feet horizontally when $73.9 t=400$ or $t=5.4$ seconds. In this time the height of the ball is $-16(5.4)^{2}+88.1(5.4)+3=12.2$ feet above ground. So yes, the ball clears the fence.

Section 11.1

21. The point $(-3,3)$ is somewhere between the contour line $z=60$ and the contour line $z=50$, so I will guess that $f(-3,3)=55$. The point $(3,-2)$ is on the contour line $z=40$, so $f(3,-2)=40$. When you lift these contour lines to their appropriate height, it seems as if the graph is closer to the z axis as z increases. So I'm visualizing a surface that looks like a tube of toothpaste that has been squeezed narrower and narrower the higher up you go, or maybe a burning candle which is sitting in a puddle of melted wax which is accumulating at the bottom.
22. The isothermals are at all points (x, y, z) where $z=T(x, y)=k$. Therefore $100 /\left(1+x^{2}+2 y^{2}\right)=k$, or $x^{2}+2 y^{2}=(100 / k)-1$. Hence the level curves are ellipses. As k increases, the ellipses decrease in size. The largest value of k is 100 , which occurs at the point $(0,0,100)$.

Section 11.2

13. Using polar coordinates, $x=r \cos \theta$ and $y=r \sin \theta$. As $(x, y) \rightarrow(0,0)$ we must have $r \rightarrow 0$. We have

$$
\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}=\frac{r^{2}}{\sqrt{r^{2}+1}-1}=\frac{s}{\sqrt{s+1}-1}
$$

where $s=r^{2}$. As $r \rightarrow 0$, the last expression is indeterminate of the form $\frac{0}{0}$. Using L'Hopital's rule,

$$
\lim _{s \rightarrow 0} \frac{s}{\sqrt{s+1}-1}=\lim _{s \rightarrow 0} \frac{1}{\frac{1}{2 \sqrt{s+1}}}=2
$$

So my conclusion is that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}=2
$$

23. As we learn in Calc I, the natural \log function is continuous at all points in its domain, which is the set of positive numbers. So we must have $x^{2}+y^{2}>4$, or all points strictly more than 2 units from the origin.
24. Write $x=r \cos \theta$ and $y=r \sin \theta$. Then

$$
\frac{x^{3}+y^{3}}{x^{2}+y^{2}}=\frac{r^{3} \cos ^{3} \theta+r^{3} \sin ^{3} \theta}{r^{2}}=r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)
$$

As (x, y) approaches the origin, the angle θ may vary, but $r \rightarrow 0^{+}$. The value of $\cos ^{3} \theta+\sin ^{3} \theta$ is always between -2 and 2 . So we have

$$
-2 r \leq \frac{x^{3}+y^{3}}{x^{2}+y^{2}} \leq 2 r
$$

Now let $r \rightarrow 0^{+}$. Then $-2 r \rightarrow 0$ and $2 r \rightarrow 0$, hence by the Squeeze Principle (Calc I concept) $\frac{x^{3}+y^{3}}{x^{2}+y^{2}} \rightarrow 0$.

