Math 223
Week 12 Solutions to Selected Problems

Section 13.4

23. The area of the triangle is $A=\frac{1}{2}$. The triangle has 3 sides, C_{1}, C_{2}, C_{3}, which can be parameterized in the positive direction via

$$
r_{1}(t)=(t, 0), \quad r_{2}(t)=(1-t, t), \quad r_{3}(t)=(0,1-t), \quad 0 \leq t \leq 1
$$

Therefore

$$
\begin{gathered}
\bar{x}=\frac{1}{2 A} \oint_{C} x^{2} d y=\frac{1}{2 A} \oint_{C_{1}} x^{2} d y+\frac{1}{2 A} \oint_{C_{2}} x^{2} d y+\frac{1}{2 A} \oint_{C_{3}} x^{2} d y= \\
\int_{0}^{1} x_{1}(t)^{2} y_{1}^{\prime}(t) d t+\int_{0}^{1} x_{2}(t)^{2} y_{2}^{\prime}(t) d t+\int_{0}^{1} x_{3}(t)^{2} y_{3}^{\prime}(t) d t= \\
\int_{0}^{1} t^{2} \cdot 0 d t+\int_{0}^{1}(1-t)^{2} \cdot 1 d t+\int_{0}^{1} 0^{2} \cdot(-1) d t=\frac{1}{3} .
\end{gathered}
$$

Section 13.5

17. By Theorem 11, the divergence of the curl of a vector field is equal to 0 everywhere (reason: mixed partial derivatives are equal, so everything cancels out in this computation). So if curl $G=\left(x y^{2}, y z^{2}, z x^{2}\right)$ then we would expect the divergence of $\left(x y^{2}, y z^{2}, z x^{2}\right)$ to be equal to zero everywhere. But the divergence is $y^{2}+z^{2}+x^{2}$, which is only equal to 0 at the origin. So no, curl $G=\left(x y^{2}, y z^{2}, z x^{2}\right)$ is not possible.
18. Let $F=(P, Q, R)$ and $G=(p, q, r)$. Then

$$
F \times G=(Q r-q R,-\operatorname{Pr}+p R, P q-p Q)
$$

The divergence of this is
$Q_{x} r+Q r_{x}-q_{x} R-q R_{x}-P_{y} r-P r_{y}+p_{y} R+p R_{y}+P_{z} q+P q_{z}-p_{z} Q-p Q_{z}$.
We can organize this into
$p\left(R_{y}-Q_{z}\right)+q\left(-R_{x}+P_{z}\right)+r\left(Q_{x}-P_{y}\right)-P\left(r_{y}-q_{z}\right)-Q\left(-r_{x}+p_{z}\right)-R\left(q_{x}-p_{y}\right)$
which is equal to $G \cdot \operatorname{curl} F-F \cdot \operatorname{curl} G$.
29.(a) We have $\mathbf{r}=(x, y, z)$ and $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. Therefore

$$
\nabla r=\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right)=\frac{\mathbf{r}}{r}
$$

