Math 223
Week 11 Solutions to Selected Problems

Section 13.2

7.

$$
\begin{aligned}
\int_{C} x y^{3} d s & =\int_{0}^{\frac{\pi}{2}}(4 \sin t)(4 \cos t)^{3} \sqrt{(4 \cos t)^{2}+(-4 \sin t)^{2}+(3)^{2}} d t= \\
& 4^{4} \cdot 5 \cdot \int_{0}^{\frac{\pi}{2}} \sin t \cos ^{3} t d t=\left.\frac{-1280 \cos ^{4} t}{4}\right|_{0} ^{\frac{\pi}{2}}=320 .
\end{aligned}
$$

Section 13.3

27. Open: Every (x, y) can be enclosed inside a disk which is entirely inside the region. Connected: every two points in the region can be connected by a path that stays inside the region. Simply connected: the regions has no holes. In other words, any simple closed curve in the region can be shrunk to a point inside the region.
28. Open: Every (x, y) can be enclosed inside a disk which is entirely inside the region. Connected: every two points in the region can be connected by a path that stays inside the region. Not simply connected: the region has a rather large hole, namely all coordinates within 1 unit of the origin. If you take a circle of radius 1.5 , which is inside the region, you cannot shrink it to a point inside the region because it is being blocked by the circle of radius 1 .
