Math 223
Week 10 Solutions to Selected Problems

Section 13.1

32. Let $r(t)=(x(t), y(t))$ have a velocity vector dictated by the vector field $F(x, y)=(1, x)$. This means

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=F(x(t), y(t))=(1, x(t)) .
$$

Therefore $x^{\prime}(t)=1$ and $y^{\prime}(t)=x(t)$. This implies the system of differential equations $\frac{d x}{d t}=1$ and $\frac{d y}{d t}=x$. We must have $x=t+C$ for some C, therefore $\frac{d y}{d t}=t+C$, which implies $y=\frac{1}{2} t^{2}+C t+D$ for some D. If the particle passes through the origin at time $t=0$, then we have $C=D=0$, which yields $x=t$ and $y=\frac{1}{2} t^{2}$. Hence $y=\frac{1}{2} x^{2}$ is the equation of the curve traced out by $r(t)$. Another way to derive this:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{x}{1}=x,
$$

therefore $d y=x d x$, therefore $\int d y=\int x d x$, therefore $y=\frac{x^{2}}{2}+C$. If the curve passes through the origin then $C=0$ and $y=\frac{1}{2} x^{2}$.

