Selected Solutions to Homework 1 Problems

Section 10.6

21. $z^{2}=4 x^{2}+9 y^{2}+36$ has the same solution set as $-\frac{x^{2}}{3^{2}}-\frac{y^{2}}{2^{2}}+\frac{z^{2}}{1^{2}}=1$. This is a Hyperboloid of Two Sheets.
22. $z=\sqrt{x^{2}+y^{2}}$ is a cone with vertex at the origin and with the positive z axis as its axis of symmetry. $x^{2}+y^{2}=1$ with $1 \leq z \leq 2$ is a cylinder of radius 1 with the z axis between 1 and 2 as its axis of symmetry. The region bounded between the two is outside the cylinder and inside the cone between $z=1$ and $z=2$.
23. The curve of intersection is the set of (x, y, z) which satisfy both equations simultaneously. Subtracting 2 times the second equation from the first, we obtain $-6 x-5 y=-2$, which is the equation of a plane.

Section 10.7

33. Given that $x(t)=t-2$ and $y(t)=t^{2}+1$, we can see that $y=(x+2)^{2}+1$ at all points on the curve. This is a parabola opening upward with vertex at $(-2,1)$. Draw $r^{\prime}(t)$ as a vector displacing from $r(t)$ at each point $r(t)$ on the curve. It should be tangent to the curve at each point.
34. $r(t)=(\cos t) i+(3 t) j+(2 \sin 2 t) k, r^{\prime}(t)=(-\sin t) i+3 j+(4 \cos 2 t) k$, $r^{\prime}(0)=0 i+3 j+4 k, T(0)=\frac{r^{\prime}(0)}{\left|r^{\prime}(0)\right|}=\frac{0 i+3 j+4 k}{\sqrt{0^{2}+3^{2}+4^{2}}}=0 i+\frac{3}{5} j+\frac{4}{5} k$.
35. Tangent line at time t_{0} has equation $L(t)=r\left(t_{0}\right)+r^{\prime}\left(t_{0}\right) t$. Here $r(t)=$ $\left(t^{5}, t^{4}, t^{3}\right), r^{\prime}(t)=\left(5 t^{4}, 4 t^{3}, 3 t^{2}\right)$ and $t_{0}=1$, therefore

$$
L(t)=(1,1,1)+(5,4,3) t=(1+5 t, 1+4 t, 1+3 t) .
$$

55. Let θ be the angle between $r_{1}^{\prime}(0)$ and $r_{2}^{\prime}(0)$. Then

$$
r_{1}^{\prime}(0) \cdot r_{2}^{\prime}(0)=\left|r_{1}^{\prime}(0)\right|\left|r_{2}^{\prime}(0)\right| \cos \theta
$$

therefore

$$
\theta=\cos ^{-1} \frac{r_{1}^{\prime}(0) \cdot r_{2}^{\prime}(0)}{\left|r_{1}^{\prime}(0)\right|\left|r_{2}^{\prime}(0)\right|}=\cos ^{-1} \frac{(1,0,0) \cdot(1,2,1)}{1 \sqrt{6}}=\cos ^{-1} \frac{1}{\sqrt{6}} \approx 66^{\circ}
$$

58. $\int_{0}^{1}\left(\frac{4}{1+t^{2}} j+\frac{2 t}{1+t^{2}} k\right) d t=\left(4 \tan ^{-1} t\right) j+\left.\left(\ln \left(1+t^{2}\right)\right) k\right|_{0} ^{1}=4 \frac{\pi}{4} j+(\ln 2) k-$ $(4 \cdot 0 j+0 \cdot k)=\pi j+(\ln 2) k$. The j part of the integral requires the trig substitution $t=\tan \theta$ and the k part of the integral requires the u-substitution $u=1+t^{2}$.

Section 10.8

14.

$$
\begin{gathered}
T(t)=\left(\frac{1}{\sqrt{5 t^{2}+1}}, \frac{t}{\sqrt{5 t^{2}+1}}, \frac{t}{\sqrt{5 t^{2}+1}}\right) \\
N(t)=\left(-\frac{\sqrt{5} t}{\sqrt{5 t^{2}+1}}, \frac{1}{\sqrt{25 t^{2}+5}}, \frac{2}{\sqrt{5 t^{2}+5}}\right) \\
\kappa(t)=\frac{\sqrt{5}}{\left(5 t^{2}+1\right)^{3 / 2}}
\end{gathered}
$$

37. The plane normal to (a, b, c) passing through $\left(x_{0}, y_{0}, z_{0}\right)$ has equation $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$. The normal plane has normal T and the osculating plane has normal $B=T \times N$. Now $r(t)=(2 \sin 3 t, t, 2 \cos 3 t)$, $r^{\prime}(t)=(6 \cos 3 t, 1,-6 \sin 3 t), T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}=\frac{1}{\sqrt{7}}(6 \cos 3 t, 1,-6 \sin 3 t), T^{\prime}(t)=$ $\frac{1}{\sqrt{7}}(-18 \sin 3 t, 0,-18 \cos 3 t), N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}=(-\sin 3 t, 0,-\cos 3 t), B(t)=$ $T(t) \times N(t)=\frac{1}{\sqrt{7}}(-\cos 3 t, 6, \sin 3 t)$. At time $t=\pi$ we arrive at the point $(0, \pi,-2)$. At this time we have $T(\pi)=\frac{1}{\sqrt{7}}(-6,1,0)$ and $B(\pi)=\frac{1}{\sqrt{7}}(1,6,0)$, therefore

$$
\begin{array}{lr}
\text { normal plane: } & -6 x+(y-\pi)=0, \\
\text { osculating plane: } & x+6(y-\pi)=0 .
\end{array}
$$

41. At the bottom of page 575 is a definition of the normal plane to a curve C at the point P : it is the set of all vectors originating from the point P which are perpendicular to the tangent vector T. Therefore the normal plane is perpendicular to T. We are told that this plane is parallel to the plane $6 x+6 y-8 z=1$, therefore T is perpendicular to $6 x+6 y-8 z=1$. The latter has normal vector $(6,6,-8)$, therefore T is parallel to $(6,6,-8)$, therefore $r^{\prime}(t)$ is parallel to $(6,6,-8)$. This is the case if and only if $r^{\prime}(t) \times(6,6,-8)=$
$(0,0,0)$. We have
$r^{\prime}(t) \times(6,6,-8)=\left|\begin{array}{ccc}i & j & k \\ 3 t^{2} & 3 & 4 t^{3} \\ 6 & 6 & -8\end{array}\right|=\left(-24-24 t^{3}\right) i+\left(24 t^{2}+24 t^{3}\right) j+\left(18 t^{2}-18\right) k$,
and this is equal to $(0,0,0)$ only when $t=-1$. This corresponds to the point $r(-1)=(-1,-3,1)$ on the curve.
