Math 223
Week 10 Homework due Tuesday, November 2

## Sections 12.8 and 13.1

Section 12.8, problems 3, 7, 9, 15, 19, 21

## Hints:

9. The region $S$ describes the range of values of $(u, v)$.
10. You must decide on the range of values of $(u, v)$ which generates $R$. Sketch the transformation to decide this. Try sketching all $x$ and $y$ corresponding to $u=c$ and $v$ variable for various values of $c$. Then sketch all $x$ and $y$ corresponding to $v=c$ and $u$ variable for various values of $c$.
11. A natural change of variables is $u=x-2 y$ and $v=3 x-y$. Now solve for $x$ and $y$ in terms of $u$ and $v$ and decide on an appropriate range of values for $(u, v)$.
12. A natural change of variables is $u=y-x$ and $v=y+x$. Now solve for $x$ and $y$ in terms of $u$ and $v$ and decide on an appropriate range of values for $(u, v)$.

Section 13.1, problems 5, 7, 9, 11, 13, 15, 17, 21, 23, 29, 32

## Hints:

29. Let $r(t)=(x(t), y(t))$ be position at time $t$. We are told that $r^{\prime}(t)=$ $\left(x(t)^{2}, x(t)+y(t)^{2}\right)$. Therefore you can calculate $r^{\prime}(3)$. The particle's position at time $t=3.01$ is exactly equal to $r(3.01)$, but unfortunately you are not provided with formulas for $x(t)$ and $y(t)$. However, an approximation to $r^{\prime}(3.01)$ is $\frac{r(3.01)-r(3.00)}{.01}$. Now solve $r^{\prime}(3.01)=\frac{r(3.01)-r(3.00)}{.01}$ for $r(3.01)$ to get an approximate value for $r(3.01)$.
30. Solve the differential equations by separation of variables (see Section 7.6).
