Math 223
Week 8 Homework due Tuesday, October 19
Sections 12.5, 12.6
Section 12.5, problems $9,19,25,27,33,35,39,45$

Hints:

General Hint: Let x_{1}, x_{2}, x_{3} denote x, y, z in some order. Suppose the region of integration R is between the planes $x_{1}=a$ and $x_{1}=b$. Suppose further that, through a plane parallel to the $x_{2} x_{3}$ plane and slicing through a particular value of x_{1}, the resulting cross-section of R can be described as the type I region $\phi_{1}\left(x_{1}\right) \leq x_{2} \leq \phi_{2}\left(x_{1}\right), \psi_{1}\left(x_{1}, x_{2}\right) \leq x_{3} \leq \psi_{2}\left(x_{1}, x_{2}\right)$. Then

$$
\iiint_{R} f(x, y, z) d V=\int_{a}^{b} \int_{\phi_{1}\left(x_{1}\right)}^{\phi_{2}\left(x_{1}\right)} \int_{\psi_{1}\left(x_{1}, x_{2}\right)}^{\phi_{2}\left(x_{1}, x_{2}\right)} f(x, y, z) d x_{3} d x_{2} d x_{1} .
$$

9. The solid region of integration is between $z=0$ and the largest value of z over the planar region of the $x y$-plane between $y=\sqrt{x}, y=0, x=1$. So use $x_{1}=z, x_{2}=x, x_{3}=y$.
10. The cross-sections of the solid region of integration are parallel to the $x y$-plane, which suggests that $x_{1}=z$.
11. It seems that $x_{1}=x, x_{2}=z, x_{3}=y$.
12. Draw the region of integration, then decide on two bounding planes to determine x_{1}, then characterize the cross sections as type I to determine x_{2} and x_{3}.
13. Here $x_{1}=y, x_{2}=x$, and $x_{3}=z$. Now draw the region of integration and mimic \#27.

Section 12.6, problems 7, 13, 17, 21, 25, 27

Hints:

General Hint: With cylindrical coordinates we express the triple integral

$$
\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} \int_{F(x, y)}^{G(x, y)} f(x, y, z) d z d x d y
$$

as a double integral

$$
\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} h(x, y) d x d y
$$

where

$$
h(x, y)=\int_{F(x, y)}^{G(x, y)} f(x, y, z) d z
$$

If the region of integration in the double integral can be expressed in polar coordinates by $x=r \cos \theta, y=r \sin \theta, \theta_{1} \leq \theta \leq \theta_{2}, f(\theta) \leq r \leq g(\theta)$, then we can have

$$
\begin{gathered}
\iiint_{R} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{f(\theta)}^{g(\theta)} r h(r \cos \theta, r \sin \theta) d r d \theta= \\
\int_{\theta_{1}}^{\theta_{2}} \int_{f(\theta)}^{g(\theta)} \int_{F(r \cos \theta, r \sin \theta)}^{G(r \cos \theta, r \sin \theta)} r f(r \cos \theta, r \sin \theta, z) d z d r d \theta .
\end{gathered}
$$

