Math 223
Week 6 Homework due Tuesday, October 5
Sections 12.1, 12.2
Section 12.1, problems 1, 11, 17, 19, 25, 31
Section 12.2, problems 1, 3, 9, 17, 27, 31, 33, 39, 51

Hints for Section 12.2:

9. Sketch D first and decide if you want to represent it as a type I or a type II region.
10. Sketch the region first, and decide if you want to represent it as a type I or a type II region. You will need to find the points of intersection of the two boundary curves (where $x=x^{4}$).
11. The cylinder $y=1-x^{2}$ in 3 dimensions is the set of all (x, y, z) such that $y=1-x^{2}$ and z is arbitrary. It hits the $x y$ plane in the parabola $y=1-x^{2}$ where $z=0$, and the entire cylinder is found by lifting this parabola vertically in both directions (above and below the $x y$ plane). The other cylinder has a similar description. The region bounded by these two parabolas in the $x y$ plane can be regarded as the region of integration of the appropriate double integral. Volume is found by cutting this region into rectangles and multiplying the rectangle area (cross-sectional area) by the distance between the two bounding planes (vertical length of rectangular solid). The distance between the plane $z=2-x-y$ and the plane $z=$ $2 x+2 y+10$ is $(2 x+2 y+10)-(2-x-y)=3 x+3 y+8$. Now set up the appropriate double integral and evaluate.
12. If you look at the notes for the class on Friday, October 2, you will see that I set up a similar integral to describe the volume of a geometric object. You can evaluate this integral by looking up the formula for the volume of this object (inside flap of textbook).
