Math 223
Week 3 Homework due Tuesday, September 14
Sections 11.3, 11.4
Section 11.3, problems 3, 29, 31, 33, 45, 64, 71, 73

Hints:

3. As we saw in class, $f_{x}(a, b)$ can be interpreted as rate of change of $z=$ $f(x, y)$ as x varies from a to $a+h$ and y remains fixed at $b . f_{y}(a, b)$ has a similar interpretation.
4. Use the formulas on the bottom of page 609.
5. Use Clairaut's Theorem, page 613.
6. You already know how to find the equation of a tangent line to a space curve $r(t)=(x(t), y(t), z(t))$ at the point $r\left(t_{0}\right)$: the equation is $L(t)=r\left(t_{0}\right)+$ $\operatorname{tr}^{\prime}\left(t_{0}\right)$. So all you need to do is parameterize the ellipse in the form of a space curve (clearly $y(t)=2$ for all t), then find the equation of the tangent line. What is an appropriate value for t_{0} ?
73 again. Can you think of a way to derive the equation of the tangent line using $f_{x}(1,2)$, where $z=f(x, y)=\sqrt{16-4 x^{2}-2 y^{2}}$? What is the physical interpretation of $f_{x}(1,2)$?

Section 11.4, problems 5, 11, 15, 19, 23, 25, 29, 32

Hints:

23. $\Delta z=f(1.05,2.1)-f(1,2), d z=f_{x}(1,2)(0.05)+f_{y}(1,2)(0.1)$.
24. Use $d w= \pm .02 w$ and $d h= \pm .02 h$. Then percentage error in S is $100 \frac{d s}{S}$, which should work out to a number after you reduce the fraction. Note that you are not told what numerical values w and h have, and you don't need them to answer the question.
25. The tangent vectors $r_{1}^{\prime}(0)$ and $r_{2}^{\prime}(1)$ lie in the tangent plane, therefore their cross product $r_{1}^{\prime}(0) \times r_{2}^{\prime}(1)$ forms a vector which is perpendicular to the tangent plane which you can use to derive the equation of the tangent plane. Why are we using $t=0$ and $u=1$?
