Show all work

Note: Problems 1-4 refer to the surface S described below and depicted in the margin. Problem 4 refers to the curve C which bounds S and is depicted in the margin. Problem 5 refers to the surface T described below and depicted in the margin.
Surfaces: S is the portion of the cone $x=\sqrt{y^{2}+z^{2}}$ that lies between the planes $x=0$ and $x=5$ and above the $x y$-plane. T is the closed surface that results by sealing off the surface S by the planes $z=0$ and $x=5$.

1. Find a parameterization of S in terms of the two parameters r and θ, including the inequalities these parameters satisfy.

Solution: $x=r, y=r \cos \theta, z=r \sin \theta, 0 \leq r \leq 5,0 \leq \theta \leq \pi$.
2. Compute the mass of the surface S, given that it has mass density $\rho(x, y, z)=x$ grams per square centimeter at position (x, y, z). Assume that x, y, and z have units of centimeters.

Solution:

$$
\begin{gathered}
M=\iint_{S} \rho d S=\int_{0}^{5} \int_{0}^{\pi} \rho(r, r \cos \theta, r \sin \theta)\left\|r_{r} \times r_{\theta}\right\| d \theta d r \\
\left\|r_{r} \times r_{\theta}\right\|=\left\|\operatorname{det}\left(\begin{array}{ccc}
i & j & k \\
1 & \cos \theta & \sin \theta \\
0 & -r \sin \theta & r \cos \theta
\end{array}\right)\right\|=\|(r,-r \cos \theta,-r \sin \theta)\|=\sqrt{2} r \\
M=\int_{0}^{5} \int_{0}^{\pi} \sqrt{2} r^{2} d \theta d r=\sqrt{2} \pi \frac{5^{3}}{3} \approx 185.12 \text { grams. }
\end{gathered}
$$

3. Compute the flux of the vector field $F(x, y, z)=(y, z, x)$ across the surface S using normal vectors which point in the negative x direction. Assume that F measures the vector velocity of a current in feet per second and that x, y, and z have units of feet.

Solution:

$$
\begin{gathered}
\text { Flux }=\iint_{S} F \cdot d S=-\int_{0}^{5} \int_{0}^{\pi} F(r, r \cos \theta, r \sin \theta) \cdot\left(r_{r} \times r_{\theta}\right) d \theta d r \\
F(r, r \cos \theta, r \sin \theta) \cdot\left(r_{r} \times r_{\theta}\right)=(r \cos \theta, r \sin \theta, r) \cdot(r,-r \cos \theta,-r \sin \theta)= \\
r^{2} \cos \theta-r^{2} \sin \theta \cos \theta-r^{2} \sin \theta=r^{2}(\cos \theta-\sin \theta \cos \theta-\sin \theta)
\end{gathered}
$$

Inner Integral:

$$
\int_{0}^{\pi} r^{2}(\cos \theta-\sin \theta \cos \theta-\sin \theta) d \theta=\left.r^{2}\left(\sin \theta-\frac{1}{2} \sin ^{2} \theta+\cos \theta\right)\right|_{0} ^{\pi}=-2 r^{2}
$$

Outer Integral: $2 \int_{0}^{5} r^{2} d r=\frac{250}{3}$ feet 3 per second.
4. Stoke's Theorem equates work done by a vector field F around a closed curve C to the flux of curl F across a surface that C bounds. Our surface S is bounded by C, where C consists of two straight lines in the $x y$-plane and a semicircle. Using Stoke's Theorem, calculate the work done by the vector field $\left(z, 0, y^{2}\right)$ around C in the counter-clockwise direction relative to the positive x-axis by computing the appropriate surface integral.

Solution:

$$
\begin{gathered}
W=\int_{C} F \cdot d r=\iint_{S} \operatorname{curl} F \cdot d S= \\
\int_{0}^{5} \int_{0}^{\pi} \operatorname{curl} F(r, r \cos \theta, r \sin \theta) \cdot\left(r_{r} \times r_{\theta}\right) d \theta d r \\
\operatorname{curl} F=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial_{x}} & \frac{\partial}{\partial_{y}} & \frac{\partial}{\partial_{z}} \\
z & 0 & y^{2}
\end{array}\right|=(2 y, 1,0)
\end{gathered}
$$

$\operatorname{curl} F(r, r \cos \theta, r \sin \theta) \cdot\left(r_{r} \times r_{\theta}\right)=(2 r \cos \theta, 1,0) \cdot(r,-r \cos \theta,-r \sin \theta)=$

$$
W=\int_{0}^{\left(2 r^{2}-r\right) \cos \theta} \int_{0}^{\pi}\left(2 r^{2}-r\right) \cos \theta d \theta d r=0
$$

5. The Divergence Theorem equates flux across a closed surface to a triple integral over the region it bounds. Using the Divergence Theorem, (a) explain why the flux of the vector field $F=(x, y, 0)$ across the surface T is equal to twice the volume bounded by T, and (b) compute the flux using an appropriate integral of your choice.

Solution:

(a) The divergence of $(x, y, 0)$ is 2 . The triple integral of 2 over the region bounded by T is 2 times the volume of T.
(b) The region bounded by the full cone of which T is half can be generated by revolving the line $z=x$ about the x-axis, $0 \leq x \leq 5$. So its volume is $\int_{0}^{5} \pi x^{2} d x=\frac{\pi 5^{3}}{3}$.

