## Show all work

1. Let $S$ represent the sphere of radius 1 centered about the origin, with equation $x^{2}+y^{2}+z^{2}=1$. Let $C$ represent the inverted cone with vertex at the origin, with equation $z=\sqrt{3 x^{2}+3 y^{2}}$. Let $E$ represent the region inside $S$ and above $C$. Assuming that the mass density of this region is $\rho(x, y, z)=z$ grams per cubic centimeter at position $(x, y, z)$ and that $x, y, z$ are measured in units of centimeters, find the mass of $E$. Use spherical coordinates.

Solution: Using spherical coordinates we can see that $0 \leq \phi \leq 1,0 \leq \theta \leq$ $2 \pi$, and that the integrand is

$$
z \rho^{2} \sin \phi=\rho^{3} \cos \phi \sin \phi .
$$

We just need to see how $\phi$ is varying. In the $y z$ plane the surfaces satisfy $y^{2}+z^{2}=1$ and $z^{2}=3 y^{2}$. This implies $y=\frac{1}{2}$ and $z=\frac{\sqrt{3}}{2}$. Hence the radial line makes an angle of $\frac{\pi}{3}$ with the $y$-axis, $\frac{\pi}{6}$ with this $z$ axis. Hence $0 \leq \phi \leq \frac{\pi}{6}$. So the mass is

$$
M=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \rho^{3} \cos \phi \sin \phi d \phi d \theta d \rho .
$$

Inner integral: $\left.\frac{1}{2} \rho^{3} \sin ^{2} \theta\right|_{0} ^{\frac{\pi}{6}}=\frac{1}{8} \rho^{3}$.
Middle integral: $\left.\frac{1}{8} \rho^{3} \theta\right|_{0} ^{2 \pi}=\frac{1}{4} \rho^{3} \pi$.
Outer integral: $\left.\frac{1}{16} \rho^{4} \pi\right|_{0} ^{1}=\frac{\pi}{16}$.
2. Compute the line-integral of the scalar field $f(x, y)=x^{2}$ over the portion of the unit circle which runs counterclockwise from $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ to $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$.

Solution: Using $x(t)=\cos t, y(t)=\sin t, \frac{\pi}{3} \leq t \leq \frac{4 \pi}{3}$, we have

$$
\begin{gathered}
\int_{C} f d s=\int_{\frac{\pi}{3}}^{\frac{4 \pi}{3}} \cos ^{2} t \sqrt{(-\sin t)^{2}+(\cos t)^{2}} d t=\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{4 \pi}{3}} 1+\cos 2 t d t= \\
\left.\frac{1}{2}\left(t+\frac{1}{2} \sin 2 t\right)\right|_{\frac{\pi}{3}} ^{\frac{4 \pi}{3}}=\frac{\pi}{2}
\end{gathered}
$$

3. Compute the work done by the vector field $f(x, y)=(y, x)$ along the straight line path starting at $(1,2)$ and ending at $(2,1)$.

Solution: Using $x(t)=1+t, y(t)=2-t, 0 \leq t \leq 1$, we have

$$
\int_{C} f \cdot d r=\int_{0}^{1}(2-t, 1+t) \cdot(1,-1) d t=\int_{0}^{1} 1-2 t d t=t-\left.t^{2}\right|_{0} ^{1}=0
$$

Alternate Solution: Note that the vector field is the gradient of $x y$, hence is conservative. Therefore

$$
W=\left.x y\right|_{(1,2)} ^{(2,1)}=(2)(1)-(1)(2)=0 .
$$

4. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the vector field defined by

$$
F(x, y)=y \cos (x y) \vec{i}+\left(x \cos (x y)+e^{y}\right) \vec{j} .
$$

(a) Prove that $F(x, y)$ is conservative.
(b) Compute the work done by $F(x, y)$ along the curve $x(t)=\cos t, y(t)=$ $\sin t,-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.

Solution: Using $P=y \cos (x y), Q=x \cos (x y)+e^{y}$, we have

$$
P_{y}=Q_{x}=\cos (x y)-y x \sin (x y) .
$$

Hence $F$ is conservative. Solving $F=\nabla f$, we have $y \cos (x y)=f_{x}$ and $x \cos (x y)+e^{y}=f_{y}$, therefore $f=\sin (x y)+e^{y}$. The endpoints of the path are $(0,-1)$ and $(0,1)$. Therefore the work integral is

$$
f(0,1)-f(0,-1)=e-\frac{1}{e} .
$$

5. Using Green's Theorem, compute the area bounded by the radial line $\theta=a$, the radial line $\theta=b$, and the circle $x^{2}+y^{2}=1$.

Solution: We will compute the work done by the vector field ( $-\frac{y}{2}, \frac{x}{2}$ ) around the boundary of the region in the counter-clockwise direction.

Along the first radial line: $x(t)=t \cos a, y(t)=t \sin a, 0 \leq t \leq 1$.

$$
W_{1}=\int_{0}^{1}\left(\frac{-t \sin a}{2}, \frac{t \cos a}{2}\right) \cdot(\cos a, \sin a) d t=0
$$

Along the circle between the radial lines: $x(t)=\cos t, y(t)=\sin t, a \leq t \leq b$.

$$
W_{2}=\int_{a}^{b}\left(\frac{-\sin t}{2}, \frac{\cos t}{2}\right) \cdot(-\sin t, \cos t) d t=\int_{a}^{b} \frac{1}{2} d t=\frac{b-a}{2} .
$$

Along the second radial line: $x(t)=t \cos b, y(t)=t \sin b, 0 \leq t \leq 1$.

$$
W_{3}=-\int_{0}^{1}\left(\frac{-t \sin b}{2}, \frac{t \cos b}{2}\right) \cdot(\cos b, \sin b) d t=0 .
$$

Hence the area is $W_{1}+W_{2}+W_{3}=\frac{b-a}{2}$.

