Data Mining
Practical Machine Learning Tools and Techniques
Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank

Engineering the input and output

- Attribute selection
 - Scheme-independent, scheme-specific
 - Attribute discretization
- Unsupervised, supervised, error vs. entropy-based, coarse to discretization
- Data transformations
 - Principal component analysis, random projections, text, time series
- Dirty data
 - Data cleaning, robust regression, anomaly detection
- Meta-learning
 - Bagging (with cost), randomization, boosting, additive (logistic) regression, option trees, logistic model trees, stacking, EDCs
- Using unlabeled data
 - Clustering for classification, co-training, EM and co-training

Just apply a learner? NO!

- Scheme/parameter selection
 - treat selection process as part of the learning process
- Modifying the input
 - Data engineering to make learning possible or easier
- Modifying the output
 - Combining models to improve performance

Attribute selection

- Adding a random or irrelevant attribute can significantly degrade C4.5’s performance
 - Problem: attribute selection based on smaller and smaller amounts of data
- IBL very susceptible to irrelevant attributes
 - Number of training instances required increases exponentially with number of irrelevant attributes
- Naïve Bayes doesn’t have this problem
 - Relevant attributes can also be harmful

Attribute subsets for weather data

- Filter approach: assess based on general characteristics of the data
- One method: find smallest subset of attributes that separates data
- Another method: use different learning scheme
 - e.g. use attributes selected by C4.5 and 1R, or coefficients of linear model, possibly applied recursively (recursive feature elimination)
- IBL-based attribute weighting techniques:
 - can’t find redundant attributes (but it has been suggested)
- Correlation-based Feature Selection (CFS):
 - correlation between attributes measured by symmetric uncertainty
 \[U(A, B) = \frac{\|U(A, B) - \rho(A, B)\|}{\|U(A, B)\|} \]
 - goodness of subset of attributes measured by (breaking ties in favor of smaller subsets):
 \[\sum_{i} U(A_i, \Omega) - (\sum_{i} \sum_{j} U(A_i, A_j)) \]
Searching attribute space

- Number of attribute subsets is exponential in number of attributes
- Common greedy approaches:
 - forward selection
 - backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find optimum solution
 - Beam search: approximation to best-first search
- Genetic algorithms

Scheme-specific selection

- Wrapper approach to attribute selection
- Implement "wrapper" around learning scheme
- Evaluation criterion: cross-validation performance
- Time consuming
 - greedy approach, k attributes \(k^q \times \text{time} \)
 - prior ranking of attributes linear in k
- Can use significance test to stop cross-validation for subset early if it is unlikely to "win" (race search)
 - can be used with forward, backward selection, prior ranking, or special-purpose schematic search
- Learning decision tables: scheme-specific attribute selection essential
- Efficient for decision tables and Naive Bayes

Attribute discretization

- Avoids normality assumption in Naive Bayes and clustering
- ID3 uses simple discretization scheme
- C4.5 performs local discretization
- Global discretization can be advantageous because it's based on more data
- Apply learner to
 - \(k \)-valued discretized attribute or to
 - \(k - 1 \) binary attributes that code the cut points

Discretization: unsupervised

- Determine intervals without knowing class labels
 - When clustering, the only possible way!
- Two strategies:
 - Equal-interval binning
 - Equal-frequency binning
 - (also called histogram equalization)
- Normally inferior to supervised schemes in classification tasks
 - But equal-frequency binning works well with naive Bayes if number of intervals is set to square root of size of dataset (proportional \(k \)-interval discretization)

Discretization: supervised

- Entropy-based method
- Build a decision tree with pre-pruning on the attribute being discretized
- Use entropy as splitting criterion
- Use minimum description length principle as stopping criterion
- Works well: the state of the art
- To apply min description length principle:
 - The "theory" is
 - the splitting point \(\log |N-1| \text{ bits} \)
 - plus class distribution in each subset
 - Compare description lengths before/after adding split

Example: temperature attribute

![Temperature Example](image-url)
Formula for MDLP

- \(N \) instances
 - Original set: \(k \) classes, entropy \(E \)
 - First subset: \(k_i \) classes, entropy \(E_i \)
 - Second subset: \(k_j \) classes, entropy \(E_j \)

\[
\text{Gain} = \frac{N \left(H(E) - \frac{N_i}{N} H(E_i) - \frac{N_j}{N} H(E_j) \right)}{N}
\]

- Results in no discretization intervals for temperature attribute

Supervised discretization: other methods

- Can replace top-down procedure by bottom-up method
- Can replace MDLP by chi-squared test
- Can use dynamic programming to find optimum \(k \)-way split for given additive criterion
 - Requires time quadratic in the number of instances
 - But can be done in linear time if error rate is used instead of entropy

Error-based vs. entropy-based

- Question: could the best discretization ever have two adjacent intervals with the same class?
- Wrong answer: No. For if so,
 - Collapse the two
 - Free up an interval
 - Use it somewhere else
 - (This is what error-based discretization will do)
- Right answer: Surprisingly, yes.
 - (And entropy-based discretization can do it)

The converse of discretization

- Make nominal values into "numeric" ones
 1. Indicator attributes (used by IB1)
 - Makes no use of potential ordering information
 2. Code an ordered nominal attribute into binary ones (used by MS’)
 - Can be used for any ordered attribute
 - Better than coding ordering into an integer (which implies a metric)
- In general: code subset of attribute values as binary

Data transformations

- Simple transformations can often make a large difference in performance
- Example transformations (not necessarily for performance improvement):
 - Difference of two date attributes
 - Ratio of two numeric (ratio-scale) attributes
 - Concatenating the values of nominal attributes
 - Encoding cluster membership
 - Adding noise to data
 - Removing data randomly or selectively
 - Obfuscating the data
Principal component analysis

- Method for identifying the important “directions” in the data
- Can rotate data into (reduced) coordinate system that is given by those directions
- Algorithm:
 1. Find direction (axis) of greatest variance
 2. Find direction of greatest variance that is perpendicular to previous direction and repeat
- Implementation: find eigenvectors of covariance matrix by diagonalization
 - Eigenvectors (sorted by eigenvalues) are the directions

Example: 10-dimensional data

- Can transform data into space given by components
- Data is normally standardized for PCA
- Could also apply this recursively in tree learner

Random projections

- PCA is nice but expensive: cubic in number of attributes
- Alternative: use random directions (projections) instead of principle components
- Surprising: random projections preserve distance relationships quite well (on average)
 - Can use them to apply 4D-trees to high-dimensional data
 - Can improve stability by using ensemble of models based on different projections

Text to attribute vectors

- Many data mining applications involve textual data (e.g. string attributes in ABNF)
- Standard transformation: convert string into bag of words by tokenization
 - Attribute values are binary, word frequencies \(f_j \):
 \[\log(1 + f_j) \text{ or } TF-IDF: \]
 \[f_j \log \left(\frac{n}{\text{number of documents containing } f_j} \right) \]
- Only retain alphanumeric sequences\(^1\)
- What should be used as delimiters?
- Should words be converted to lowercase?
- Should stopwords be ignored?
- Should frequencies be included? Or even just the \(k \) most frequent words?\(^2\)

Time series

- In time series data, each instance represents a different time step
- Some simple transformations:
 - Shift values from the past/future
 - Compute difference (delta) between instances (i.e. “derivative”)
- In some datasets, samples are not regular but time is given by timestamp attribute
- Need to normalize by step size when transforming
- Transformations need to be adapted if attributes represent different time steps

Automatic data cleansing

- To improve a decision tree:
 - Remove misclassified instances, then re-learn!
- Better (of course!):
 - Human expert checks misclassified instances
- Attribute noise vs class noise
 - Attribute noise should be left in training set (don’t train on clean set and test on dirty one)
 - Systematic class noise (e.g. one class substituted for another): leave in training set
 - Unsystematic class noise: eliminate from training set, if possible
Robust regression

- "Robust" statistical method—one that addresses problem of outliers
- To make regression more robust:
 - Minimize absolute error, not squared error
 - Remove outliers (e.g., 10% of points farthest from the regression plane)
 - Minimize median instead of mean of squares (cope with outliers in x and y direction)
 - Finds narrowest strip covering half the observations

Detecting anomalies

- Visualization can help to detect anomalies
- Automatic approach: committee of different learning schemes
 - E.g., decision tree
 - nearest-neighbor learner
 - linear discriminant function
- Conservative approach: delete instances incorrectly classified by all of them
- Problem: might sacrifice instances of small classes

Combining multiple models

- Basic idea: build different “experts”, let them vote
- Advantage:
 - often improves predictive performance
- Disadvantage:
 - usually produces output that is very hard to analyze
 - but: there are approaches that aim to produce a single comprehensible structure

Bagging

- Combining predictions by voting/averaging
 - Simplest way
 - Each model receives equal weight
- "Idealized" version:
 - Sample several training sets of size \(n \)
 (instead of just having one training set of size \(n \))
 - Build a classifier for each training set
 - Combine the classifiers’ predictions
- Learning scheme is unstable: almost always improves performance
 - Small change in training data can make big change in model (e.g., decision trees)

Bias-variance decomposition

- Used to analyze how much selection of any specific training set affects performance
- Assume infinitely many classifiers, built from different training sets of size \(n \)
- For any learning scheme,
 - \(\text{Bias} = \) expected error of the combined classifier on new data
 - \(\text{Variance} = \) expected error due to the particular training set used
- Total expected error = bias + variance
More on bagging

- Bagging works because it reduces variance by voting/averaging
 - Note: in some pathological hypothetical situations the overall error might increase
 - Usually, the more classifiers the better
 - Problem: we only have one dataset!
 - Solution: generate new ones of size n by sampling from it with replacement
 - Can help a lot if data is noisy
 - Can also be applied to numeric prediction
 - Aside: bias-variance decomposition originally only known for numeric prediction

Bagging classifiers

Model generation

- Set n be the number of instances in the training data
- For each of n classifiers:
 - Sample n instances from training set (with replacement)
 - Apply learning algorithm to the sample
 - Store resulting model

Classification

- For each of the n models:
 - Predict class of instance using model
 - Return class that is predicted most often

Bagging with costs

- Bagging unpruned decision trees known to produce good probability estimates
 - Where, instead of voting, the individual classifiers' probability estimates are averaged
 - Note: this can also improve the success rate
 - Can use this with minimum-expected cost approach for learning problems with costs
 - Problem: not interpretable
 - MetaCost re-labels training data using bagging with costs and then builds single tree

Randomization

- Can randomize learning algorithm instead of input
 - Some algorithms already have a random component: eg. initial weights in neural net
 - Most algorithms can be randomized, eg. greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - Eg: attribute selection in decision trees
 - More generally applicable than bagging; eg. random subsets in nearest-neighbor scheme
 - Can be combined with bagging

Boosting

- Also uses voting/averaging
- Weights models according to performance
- Iterative: new models are influenced by performance of previously built ones
 - Encourage new model to become an "expert" for instances misclassified by earlier models
 - Intuitive justification: models should be experts that complement each other
- Several variants

AdaBoost.M1

Model generation

- Assign equal weight to each training instance
- For t iterations:
 - Apply learning algorithm to weighted dataset.
 - Store resulting model
 - Compute model's error on weighted dataset
 - If error is e:
 - Increase weight w by e
 - Generate new generation
 - For each instance in dataset:
 - If classified correctly by model:
 - Multiply instance's weight by $w/(1 - e)$
 - Normalize weight of all instances

Classification

- Assign weight to all classes:
- For each of the t (or less) models:
 - For the class this model predicts
 - add $-log w/(1 - e)$ to this class's weight
 - Return class with highest weight
More on boosting I

- Boosting needs weights ... but
- Can adapt learning algorithm ... or
- Can apply boosting *without* weights
 - resample with probability determined by weights
 - disadvantage: not all instances are used
 - advantage: if error > 0.5, can resample again
- Steams from computational learning theory
- Theoretical result:
 - training error decreases exponentially
- Also:
 - works if base classifiers are not too complex, and
 - their error doesn’t become too large too quickly

Additive regression I

- Turns out that boosting is a greedy algorithm for fitting additive models
- More specifically, implements *forward stagewise additive modeling*
- Same kind of algorithm for numeric prediction:
 1. Build standard regression model (eg. tree)
 2. Gather residuals, learn model predicting residuals (eg. tree), and repeat
- To predict, simply sum up individual predictions from all models

Additive logistic regression

- Can use the logit transformation to get algorithm for classification
- More precisely, class probability estimation
- Probability estimation problem is transformed into regression problem
- Regression scheme is used as base learner (eg. regression tree learner)
- Can use forward stagewise algorithm: at each stage, add model that maximizes probability of data
 - If \(f \) is the \(j \)th regression model, the ensemble predicts probability \(\frac{1}{1 + e^{c[j]}} \) for the first class

More on boosting II

- Continue boosting after training error = 0?
- Puzzling fact: generalization error continues to decrease!
 - Seems to contradict Occam’s Razor
- Explanation:
 - consider margins (confidence), not error
 - Difference between estimated probability for true class and nearest other class (between -1 and 1)
- Boosting works with *weak* learners
 - only condition: error doesn’t exceed 0.5
- In practice, boosting sometimes overfits (in contrast to bagging)

Additive regression II

- Minimizes squared error of ensemble if base learner minimizes squared error
- Doesn’t make sense to use it with standard multiple linear regression, why?
- Can use it with *simple* linear regression to build multiple linear regression model
- Use cross-validation to decide when to stop
- Another trick: shrink predictions of the base models by multiplying with pos. constant < 1
- Caveat: need to start with model 0 that predicts the mean

LogitBoost

Model generation

For \(j \geq 1 \) iterations:

- For each instance \(x[i] \):
 - Set the target value for the regression to \(\alpha[i] = p[i] \times a[i] \times \frac{1}{1 - e^{c[i]}} - \frac{1}{1 + e^{c[i]}} \)
- Set the weight of instance \(x[i] \) to \(p[i] \times a[i] \times \frac{1}{1 - e^{c[i]}} - \frac{1}{1 + e^{c[i]}} \)
- Fit a regression model \(f[j] \) to the data with class values \(a[i] \) and weights \(w[i] \)

Classification

Predict +1 if \(p[i] | f[j] a[i] > 0 \), otherwise predict -1.

- Maximizes probability if base learner minimizes squared error
- Difference to AdaBoost: optimizes probability/likelihood instead of exponential loss
- Can be adapted to multi-class problems
- Shrinking and cross-validation-based selection apply
Option trees

- Ensembles are not interpretable
- Can we generate a single model?
 - One possibility: "cloning" the ensemble by using lots of artificial data that is labeled by ensemble
 - Another possibility: generating a single structure that represents ensemble in compact fashion
- Option tree: decision tree with option nodes
 - Idea: follow all possible branches at option node
 - Predictions from different branches are merged using voting or by averaging probability estimates

Alternating decision trees

- Can also grow option tree by incrementally adding nodes to it
- Structure called alternating decision tree, with splitter nodes and prediction nodes
 - Prediction nodes are leaves if no splitter nodes have been added to them yet
 - Standard alternating tree applies to 2-class problems
 - To obtain prediction, filter instance down all applicable branches and sum predictions
 - Predict one class or the other depending on whether the sum is positive or negative

Growing alternating trees

- Tree is grown using a boosting algorithm
 - Eg. LogitBoost described earlier
 - Assume that base learner produces single conjunctive rule in each boosting iteration (note: rule for regression)
 - Each rule could similarly be added into the tree, including the numeric prediction obtained from the rule
 - Problem: tree would grow very large very quickly
 - Solution: base learner should only consider candidate rules that extend existing branches
 - Extension adds splitter node and two prediction nodes (assuming binary splits)
 - Standard algorithm chooses best extension among all possible extensions applicable to tree
 - More efficient heuristics can be employed instead

Logistic model trees

- Option trees may still be difficult to interpret
- Can also use boosting to build decision trees with linear models at the leaves (ie. trees without options)
- Algorithm for building logistic model trees:
 - Run LogitBoost with simple linear regression as base learner (choosing the best attribute in each iteration)
 - Intermittent boosting when cross-validated performance of additive model no longer increases
 - Split data (eg. as in C4.5) and resume boosting in subsets of data
 - Prune tree using cross-validation-based pruning strategy (from CART tree learner)
Stacking

- To combine predictions of base learners, don’t vote, use meta learner
 - Base learners: level-0 models
 - Meta learner: level-1 model
 - Predictions of base learners are input to meta learner
- Base learners are usually different schemes
- Can’t use predictions on training data to generate data for level-1 model!
 - Instead use cross-validation-like scheme
- Hard to analyze theoretically: “black magic”

More on stacking

- If base learners can output probabilities, use those as input to meta learner instead
- Which algorithm to use for meta learner?
 - In principle, any learning scheme
 - Prefer “relatively global, smooth” model
 - Base learners do most of the work
 - Reduce risk of overfitting
- Stacking can be applied to numeric prediction too

Error-correcting output codes

- Multiclass problem → binary problems
 - Simple scheme:
 - One-per-class coding
 - Idea: use error-correcting codes instead
 - base classifiers predict 1011111, true class = 37!
 - Use code words that have large Hamming distance between any pair
 - Can correct up to \((d - 1)/2\) single-bit errors

More on EOCs

- Two criteria:
 - Row separation: minimum distance between rows
 - Columns separation: minimum distance between columns
 * (and columns’ complements)
 - Why? Because if columns are identical, base classifiers will likely make the same errors
 - Error-correction is weakened if errors are correlated
 - 3 classes → only 2 possible columns
 - (and 4 out of the 8 are complements)
 - Cannot achieve row and column separation
 - Only works for problems with > 3 classes

Exhaustive EOCs

- Exhaustive code for \(k\) classes:
 - Columns comprise every possible \(k\)-string
 - ... except for complements and all-zero/one strings
 - Each code word contains \(2^k - 1\) bits
 - Class 1: code word is all ones
 - Class 2: \(2^k - 2\) zeros followed by \(2^k - 1\) ones
 - Class \(i\): alternating runs of \(2^i - 0\)s and 1s
 - last run is one short

More on EOCs

- More classes ⇒ exhaustive codes infeasible
 - Number of columns increases exponentially
 - Random code words have good error-correcting properties on average!
 - There are sophisticated methods for generating EOCs with just a few columns
 - EOCs don’t work with NN classifier
 - But: works if different attribute subsets are used to predict each output bit
Using unlabeled data

- **Semisupervised learning**: attempts to use unlabeled data as well as labeled data
 - The aim is to improve classification performance
- Why try to do this? Unlabeled data is often plentiful and labeling data can be expensive
 - Web mining: classifying web pages
 - Text mining: identifying names in text
 - Video mining: classifying people in the news
- Leveraging the large pool of unlabeled examples would be very attractive

Clustering for classification

- Idea: use naive Bayes on labeled examples and then apply EM
 - First, build naive Bayes model on labeled data
 - Second, label unlabeled data based on class probabilities (*"expectation" step)
 - Third, train new naive Bayes model based on all the data (*"maximization" step)
 - Fourth, repeat 2nd and 3rd step until convergence
- Essentially the same as EM for clustering with fixed cluster membership probabilities for labeled data and clusters = #classes

Comments

- Has been applied successfully to document classification
 - Certain phrases are indicative of classes
 - Some of these phrases occur only in the unlabeled data, some in both sets
 - EM can generalize the model by taking advantage of co-occurrence of these phrases
- Refinement 1: reduce weight of unlabeled data
- Refinement 2: allow multiple clusters per class

Co-training

- Method for learning from multiple views (multiple sets of attributes), eg:
 - First set of attributes describes content of web page
 - Second set of attributes describes links that link to the web page
 - Step 1: build model from each view
 - Step 2: use models to assign labels to unlabeled data
 - Step 3: select those unlabeled examples that were most confidently predicted (ideally, preserving ratio of classes)
 - Step 4: add those examples to the training set
 - Step 5: go to Step 1 until data exhausted
- Assumption: views are independent

EM and co-training

- Like EM for semisupervised learning, but view is switched in each iteration of EM
 - Uses all the unlabeled data (probabilistically labeled) for training
- Has also been used successfully with support vector machines
 - Using logistic models fit to output of SVMs
- Co-training also seems to work when views are chosen randomly!
 - Why? Possibly because co-trained classifier is more robust