Data Mining
Practical Machine Learning Tools and Techniques
Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank

Industrial-strength algorithms

- For an algorithm to be useful in a wide range of real-world applications it must:
 - Permit numeric attributes
 - Allow missing values
 - Be robust in the presence of noise
 - Be able to approximate arbitrary concept descriptions (at least in principle)
 - Basic schemes need to be extended to fulfill these requirements

Numeric attributes

- Standard method: binary splits
 - E.g. temp < 45
- Unlike nominal attributes, every attribute has many possible split points
- Solution is straightforward extension:
 - Evaluate info gain (or other measure) for every possible split point of attribute
 - Choose "best" split point
 - Info gain for best split point is info gain for attribute
 - Computationally more demanding

Decision trees

- Extending ID3:
 - to permit numeric attributes: straightforward
 - to deal sensibly with missing values: trickier
 - stability for noisy data: requires pruning mechanism
- End result: C4.5 (Quinlan)
 - Best-known and (probably) most widely-used learning algorithm
 - Commercial successor: C5.0

Weather data (again!)

Sunny	Rainy	Fewer	High	Fewer	Rain
		Hot	High		No
		High	High		Yes
		Rainy	High		Yes
Rainy	Rainy			Rainy	True

If sunny = sunny and humidity = high then play = no
If sunny = sunny and humidity = high then play = no
If sunny = sunny and humidity = high then play = no
If sunny = sunny and humidity = high then play = yes
If none of the above then play = yes

Weather data (again!)

<table>
<thead>
<tr>
<th>Sunny</th>
<th>Cloudy</th>
<th>Rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.5</td>
<td>71.5</td>
<td>68.5</td>
</tr>
</tbody>
</table>

Example

- Split on temperature attribute:

 - E.g. temperature < 71.5: yes/4, no/2

 - temperature > 71.5: yes/3, no/3

 - Info(4,2) + Info(4,2) + 8/14 Info(5,3) = 0.939 bits

 - Place split points halfway between values

 - Can evaluate all split points in one pass!

Can avoid repeated sorting

- Sort instances by the values of the numeric attribute

 - Time complexity for sorting: O(n log n)

 - Does this have to be repeated at each node of the tree?

 - No! Sort order for children can be derived from sort order for parent

 - Time complexity of derivation: O(n)

 - Drawback: need to create and store an array of sorted indices for each numeric attribute

Computing multi-way splits

- Simple and efficient way of generating multi-way splits: greedy algorithm

 - Dynamic programming can find optimum multi-way split in O(n) time

 - imp(k, l, j) is the impurity of the best split of values x_j...x_k into k sub-intervals

 - imp(k, 1, i) = min_{j < k} imp(k-1, l, j) + imp(1, j+1, i)

 - In practice, greedy algorithm works as well

Binary vs multiway splits

- Splitting (multi-way) on a nominal attribute exhausts all information in that attribute

 - Nominal attribute is tested (at most) once on any path in the tree

 - Not so for binary splits on numeric attributes!

 - Numeric attribute may be tested several times along a path in the tree

 - Disadvantage: tree is hard to read

 - Remedy:

 - pre-discretize numeric attributes, or

 - use multi-way splits instead of binary ones

Missing values

- Split instances with missing values into pieces

 - A piece going down a branch receives a weight proportional to the popularity of the branch

 - weights sum to 1

 - Info gain works with fractional instances

 - use sums of weights instead of counts

 - During classification, split the instance into pieces in the same way

 - Merge probability distribution using weights
Pruning

- Prevent overfitting to noise in the data
- "Prune" the decision tree
- Two strategies:
 - Prepruning: take a fully grown decision tree and discard unreliable parts
 - Postpruning: stop growing a branch when information becomes unreliable
- Postpruning preferred in practice—prepruning can "stop early"

Early stopping

- Pre-pruning may stop the growth process prematurely: early stopping
- Classic example: XOR/Parity problem
 - No individual attribute exhibits any significant association to the class
 - Structure is only visible in fully expanded tree
 - Prepruning won't expand the root node
- But: XOR-type problems rare in practice
- And: prepruning faster than postpruning

Subtree replacement

- Bottom-up
 - Consider replacing a tree only after considering all its subtrees

Postpruning

- First, build full tree
- Then, prune it
 - Fully-grown tree shows all attribute interactions
 - Problem: some subtrees might be due to chance effects
 - Two pruning operations:
 - Subtree replacement
 - Subtree raising
 - Possible strategies:
 - Error estimation
 - Significance testing
 - MDL principle

Subtree raising

- Delete node
- Redistribute instances
- Slower than subtree replacement
 (Worthwhile?)
Estimating error rates

- Prune only if it does not increase the estimated error
- Error on the training data is NOT a useful estimator
 (would result in almost no pruning)
- Use hold-out set for pruning
 ("reduced-error pruning")
- C4.5’s method
 - Derive confidence interval from training data
 - Use a heuristic limit, derived from this, for pruning
 - Standard Bernoulli-process-based method
 - Shaky statistical assumptions (based on training data)

C4.5’s method

- Error estimate for subtree is weighted sum of error estimates for all its leaves
- Error estimate for a node:
 \[e = \frac{f}{1 + \frac{1}{N} \sum_{i} e_{i} \cdot \frac{1 + f_{i}}{1 + f_{i} - f_{i}} \cdot \frac{N_{i}}{N_{i} - N_{i}} \]
 - If \(c = 25\% \) then \(z = 0.69 \) (from normal distribution)
 - \(f \) is the error on the training data
 - \(N \) is the number of instances covered by the leaf

Example

From trees to rules

- Simple way: one rule for each leaf
- C4.5rules: greedily prune conditions from each rule if this reduces its estimated error
- Can produce duplicate rules
- Check for this at the end
- Then
 - look at each class in turn
 - consider the rules for that class
 - find a "good" subset (guided by MDL)
- Then rank the subsets to avoid conflicts
- Finally, remove rules (greedily) if this decreases error on the training data

C4.5: choices and options

- C4.5rules slow for large and noisy datasets
- Commercial version C5.0rules uses a different technique
 - Much faster and a bit more accurate
- C4.5 has two parameters
 - Confidence value (default 25%): lower values incur heavier pruning
 - Minimum number of instances in the two most popular branches (default 2)
Discussion

TDIDT: Top-Down Induction of Decision Trees
- The most extensively studied method of machine learning used in data mining
- Different criteria for attribute/test selection rarely make a large difference
- Different pruning methods mainly change the size of the resulting pruned tree
- C4.5 builds univariate decision trees
- Some TDIDT systems can build multivariate trees (e.g., CART)

Test selection criteria

- Basic covering algorithm:
 - Keep adding conditions to a rule to improve its accuracy
 - Add the condition that improves accuracy the most
- Measure 1: \(p/l \)
 - \(p \) total instances covered by rule
 - \(l \) number of those that are positive
 - Produce rules that don’t cover negative instances, as quickly as possible
 - May produce rules with very small coverage
- Measure 2: Information gain \(p (\log p / l – \log (P/T)) \)
 - \(P \) the positive and total numbers before the new condition was added
 - Information gain emphasizes positive rather than negative instances
 - These interact with the pruning mechanism used

Classification rules

- Common procedure: separate-and-conquer
- Differences:
 - Search method (e.g., greedy, beam search, ...)
 - Test selection criteria (e.g., accuracy, ...)
 - Pruning method (e.g., MDL, hold-out set, ...)
 - Stopping criterion (e.g., minimum accuracy)
 - Post-processing step
- Also: Decision list vs. one rule set for each class

Pruning rules

- Two main strategies:
 - Incremental pruning
 - Global pruning
- Other difference: pruning criterion
 - Error on hold-out set (reduced-error pruning)
 - Statistical significance
 - MDL principle
- Also: post-pruning vs. pre-pruning

Missing values, numeric attributes

- Common treatment of missing values:
 - For any test, they fail
 - Algorithm must either
 - use other tests to separate out positive instances
 - Store them uncovered until later in the process
 - In some cases it’s better to treat “missing” as a separate value
 - Numeric attributes are treated just like they are in decision trees

Using a pruning set

- For statistical validity, must evaluate measure on data not used for training:
 - This requires a growing set and a pruning set
- Reduced-error pruning: build full rule set and then prune it
- Incremental reduced-error pruning: simplify each rule as soon as it is built
 - Can re-split data after rule has been pruned
 - Stratification advantageous
Incremental reduced-error pruning

- Initialize S to the instance set
- Until S is empty do:
 - Split S into P and F so that $|P| : |F| = 2 : 1$
 - For each r for which S contains an instance:
 - Use basic covering algorithm to create best perfect rule for r
 - Calculate $w(r)$: worth of rule on P
 - If $w(r) > w(P)$: prune rule and repeat previous step
 - From the rules for the different classes, select the one
 that's worth most (i.e., with largest $w(r)$)
 - Point the rule
 - Remove the instances covered by rule from S
 - Continue

Measures used in IREP

- $[p + (N - n)] / T$
 - N is total number of negatives
 - Counterintuitive:
 - $p = 2000$ and $n = 1000$ vs. $p = 1000$ and $n = 1$
 - Success rate p / t
 - Problem: $p = 1$ and $t = 1$
 - vs. $p = 1000$ and $t = 1001$
 - $(p - n) / t$
 - Same effect as success rate because it equals $2p(t - 1)$
 - Seems hard to find a simple measure of a rule's worth that corresponds with intuition

Variations

- Generating rules for classes in order
 - Start with the smallest class
 - Leave the largest class covered by the default rule
- Stopping criterion
 - Stop rule production if accuracy becomes too low
- Rule learner RIPPER:
 - Uses MDL-based stopping criterion
 - Employs post-processing step to modify rules
 guided by MDL criterion

Using global optimization

- RIPPER: Repeated Incremental Pruning to Produce Error Reduction (does global optimization in an efficient way)
- Classes are processed in order of increasing size
- Initial rule set for each class is generated using IREP
 - An MDL-based stopping condition is used
 - DL: bits needed to send examples wrt set of rules, bits needed to send k tests, and bits for k
 - Once a rule set has been produced for each class, each rule is re-considered and two variants are produced
 - One is an extended version, one is grown from scratch
 - Chooses among three candidates according to DL
 - Final clean-up step greedily deletes rules to minimize DL

PART

- Avoids global optimization step used in C4.5 rules and RIPPER
- Generates an unrestricted decision list using basic separate-and-conquer procedure
- Builds a partial decision tree to obtain a rule
 - A rule is only pruned if all its implications are known
 - Prevents hasty generalization
- Uses C4.5's procedures to build a tree

Building a partial tree

- **C4.5 rules** (RIPPER):
 - Choose test T and use it to split set of examples into subsets
 - Sort subsets into increasing order of average entropy
- **PART**:
 - Choose test T and use it to split set of examples into subsets
 - Sort subsets into increasing order of average entropy
 - While there is a subset X not yet been expanded
 - if all subsets expanded as far as leaves
 - expand-subset(X)
 - else estimate error for subset
 - estimated error for node
 - expand-subset into subsets and make node a leaf
Notes on PART

- Make leaf with maximum coverage into a rule
- Treat missing values just as C4.5 does
 - i.e. split instance into pieces
- Time taken to generate a rule:
 - Worst case: same as for building a pruned tree
 - Occurs when data is noisy
 - Best case: same as for building a single rule
 - Occurs when data is not noisy

Rules with exceptions

1. Given: a way of generating a single good rule
2. Then it's easy to generate rules with exceptions
3. Select default class for top-level rule
4. Generate a good rule for one of the remaining classes
5. Apply this method recursively to the two subsets produced by the rule
 (i.e. instances that are covered/not covered)

Extending linear classification

- Linear classifiers can't model nonlinear class boundaries
- Simple trick:
 - Map attributes into new space consisting of combinations of attribute values
 - E.g. all products of n factors that can be constructed from the attributes
 - Example with two attributes and n = 3:
 \[x = w_{1}a_{1}^{2} + w_{2}a_{2}^{2} + w_{1}a_{1}a_{2} + w_{3}a_{2}^{2} \]

Iris data example

- Iris length = 2.2 ...
- Iris width = 1.4 ...
- Petal length = 4.2 ...
- Petal width = 1.4 ...

Problems with this approach

- 1st problem: speed
 - 10 attributes, and n = 5 \(\rightarrow \) 2000 coefficients
 - Use linear regression with attribute selection
 - Run time is cubic in number of attributes
- 2nd problem: overfitting
 - Number of coefficients is large relative to the number of training instances
 - Curse of dimensionality kicks in
Support vector machines

- Support vector machines are algorithms for learning linear classifiers
- Resilient to overfitting because they learn a particular linear decision boundary:
 - The maximum margin hyperplane
- Fast in the nonlinear case
 - Use a mathematical trick to avoid creating "pseudo-attributes"
 - The nonlinear space is created implicitly

Support vectors

- The support vectors define the maximum margin hyperplane
 - All other instances can be deleted without changing its position and orientation

Finding support vectors

\[
x = b + \sum_{i=1}^{m} \alpha_i y_i \langle \hat{x}, \hat{a} \rangle
\]

- Support vector: training instance for which \(\alpha_i > 0 \)
- Determine \(\alpha_i \) and \(b \):
 - A constrained quadratic optimization problem
 - Off-the-shelf tools for solving these problems
 - However, special purpose algorithms are faster
 - Example: Platt’s sequential minimal optimization algorithm (implemented in WEKA)
- Note: all this assumes separable data!

Nonlinear SVMs

- "Pseudo attributes" represent attribute combinations
- Overfitting not a problem because the maximum margin hyperplane is stable
 - There are usually few support vectors relative to the size of the training set
- Computation time still an issue
 - Each time the dot product is computed, all the "pseudo attributes" must be included

A mathematical trick

- Avoid computing the "pseudo attributes"
- Compute the dot product before doing the nonlinear mapping
 - Example:
 \[
x = b + \sum_{i=1}^{n} \alpha_i y_i \langle \hat{x} / |\hat{x}|, \hat{a} \rangle
\]
- Corresponds to a map into the instance space spanned by all products of \(n \) attributes
Other kernel functions

- Mapping is called a "kernel function"
- Polynomial kernel
 \[x' = (x + b)^\gamma \]
- We can use others:
 \[x' = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x) \]
- Only requirement:
 \[K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \]
- Examples:
 \[K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = 1^2 \]
 \[K(x_i, x_j) = \exp(-||x_i - x_j||^2) \]
 \[K(x_i, x_j) = \text{tanh}(\beta \cdot x_i \cdot x_j) \]

Sparse data

- SVM algorithms speed up dramatically if the data is sparse (i.e. many values are 0)
- Why? Because they compute lots and lots of dot products
- Sparse data
 - compute dot products very efficiently
 - iterate only over non-zero values
- SVMs can process sparse datasets with 10,000s of attributes

Support vector regression

- Maximum margin hyperplane only applies to classification
- However, idea of support vectors and kernel functions can be used for regression
- Basic method same as in linear regression: want to minimize error
 - Difference A: ignore errors smaller than \(\varepsilon \) and use absolute error instead of squared error
 - Difference B: simultaneously aim to maximize flatness of function
- User-specified parameter \(\varepsilon \) defines "tube"

Noise

- Have assumed that the data is separable (in original or transformed space)
- Can apply SVMs to noisy data by introducing a "noise" parameter \(C \)
- \(C \) bounds the influence of any one training instance on the decision boundary
- Corresponding constraint: \(0 < \alpha_i < C \)
- Still a quadratic optimization problem
- Have to determine \(C \) by experimentation

Applications

- Machine vision: e.g. face identification
- Outperforms alternative approaches (1.5% error)
- Handwritten digit recognition: USPS data
 - Comparable to best alternative (0.4% error)
- Bioinformatics: e.g. prediction of protein secondary structure
- Text classification
- Can modify SVM technique for numeric prediction problems

More on SVM regression

- If there are tubes that enclose all the training points, the flattest of them is used
 - Eg: mean is used if 2\(\varepsilon \) > range of target values
- Model can be written as:
 \[x = b \sum_{i=1}^{n} \alpha_i y_i K(x_i, x) \]
 - Support vectors: points on or outside tube
 - Dot product can be replaced by kernel function
 - Note: coefficients \(\alpha_i \) may be negative
- No tube that encloses all training points?
 - Requires trade-off between error and flatness
 - Controlled by upper limit \(C \) on absolute value of coefficients \(\alpha_i \)
The kernel perceptron

- Can use "kernel trick" to make non-linear classifier using perceptron rule
- Observation: weight vector is modified by adding or subtracting training instances
- Can represent weight vector using all instances that have been misclassified:
 - Can use instead of
 \[\sum_{i} y_i \langle x_i, \omega \rangle \]
 \[\sum_{i} w_i \rho_i \]
- Now swap summation signs:
 - Can be expressed as:
 \[\sum_{i} y_i \langle x_i, \omega \rangle \sum_{j} \rho_j \]
 \[\sum_{j} \sum_{i} y_i \langle x_i, \omega \rangle \rho_j \]
- Can replace dot product by kernel:
 \[\sum_{j} \rho_j \]

Multilayer perceptrons

- Using kernels is only one way to build nonlinear classifier based on perceptrons
- Can create network of perceptrons to approximate arbitrary target concepts
- Multilayer perceptron is an example of an artificial neural network
 - Consists of: input layer, hidden layer(s), and output layer
- Structure of MLP is usually found by experimentation
- Parameters can be found using backpropagation

Backpropagation

- How to learn weights given network structure?
 - Cannot simply use perceptron learning rule because we have hidden layer(s)
 - Function we are trying to minimize: error
 - Can use a general function minimization technique called gradient descent
 - Need differentiable activation function: use sigmoid function instead of threshold function
 \[E = \frac{1}{2} |y - y^{(k)}|^2 \]
 - Need differentiable error function: can't use zero-one loss, but can use squared error

Comments on kernel perceptron

- Finds separating hyperplane in space created by kernel function (if it exists)
- But: doesn't find maximum-margin hyperplane
- Easy to implement, supports incremental learning
- Linear and logistic regression can also be upgraded using the kernel trick
- But: solution is not "sparse": every training instance contributes to solution
- Perceptron can be made more stable by using all weight vectors encountered during learning, not just last one (voted perceptron)
- Weight vectors vote on prediction (vote based on number of successful classifications since inception)
The two activation functions

- Function: $x^2 + 1$
- Derivative: $2x$
- Learning rate: 0.1
- Start value: 4

Gradient descent example

Can only find a local minimum!

Minimizing the error I

- Need to find partial derivative of error function for each parameter (i.e. weight)

\[
\frac{\partial E}{\partial w} = (y - f(x)) df(x) \frac{\partial f(x)}{\partial w}
\]

Minimizing the error II

- What about the weights for the connections from the input to the hidden layer?

\[
\frac{\partial E}{\partial w} = (y - f(x)) f(x) df(x) \frac{\partial f(x)}{\partial w}
\]

Remarks

- Same process works for multiple hidden layers and multiple output units (e.g. for multiple classes)
- Can update weights after all training instances have been processed or incrementally:
 - Batch learning: stochastic backpropagation
 - Weights are initialized to small random values
- How to avoid overfitting?
 - Early stopping: use validation set to check when to stop
 - Weight decay: add penalty term to error function
- How to speed up learning?
 - Momentum: re-use proportion of old weight change
 - Use optimization method that employs 2nd derivative

Radial basis function networks

- Another type of feedforward network with two layers (plus the input layer)
- Hidden units represent points in instance space and activation depends on distance
- To this end, distance is converted into similarity: Gaussian activation function
 - Width may be different for each hidden unit
 - Points of equal activation form hypersphere (or hyperellipsoid) as opposed to hyperplane
- Output layer same as in MLP
Learning RBF networks

- Parameters: centers and widths of the RBFs + weights in output layer
- Can learn two sets of parameters independently and still get accurate models
 - Eg.: clusters from k-means can be used to form basis functions
- Linear model can be used based on fixed RBFs
- Makes learning RBFs very efficient
- Disadvantage: no built-in attribute weighting based on relevance
- RBF networks are related to RBF SVMs

Instance-based learning

- Practical problems of 1-NN scheme:
 - Slow (but: fast tree-based approaches exist)
 - Remedies: remove irrelevant data
 - Noise (but: k-NN copes quite well with noise)
 - Remedies: reduce noisy instances
 - All attributes deemed equally important
 - Remedies: weight attributes (or simply select)
 - Doesn’t perform explicit generalization
 - Remedies: rule-based/NI approach

Learning prototypes

- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use prototypical examples

Speed up, combat noise

- IB2: save memory, speed up classification
 - Work incrementally
 - Only incorporate misclassified instances
 - Problem: noisy data gets incorporated
- IB3: deal with noise
 - Discard instances that don’t perform well
 - Compute confidence intervals for
 - 1. Each instance’s success rate
 - 2. Default accuracy of its class
 - Accept/reject instances
 - Accept if lower limit of 1 exceeds upper limit of 2
 - Reject if upper limit of 1 is below lower limit of 2

Weight attributes

- IB4: weight each attribute (weights can be class-specific)
 - Weighted Euclidean distance:
 $$\sqrt{w_1(x_1 - y_1)^2 + \ldots + w_n(x_n - y_n)^2}$$
 - Update weights based on nearest neighbor
 - Class correct: increase weight
 - Class incorrect: decrease weight
 - Amount of change for i th attribute depends on $|x_i - y_i|

Rectangular generalizations

- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than "normal" rules.)
- Nested rectangles are rules with exceptions
Generalized exemplars

- Generalize instances into hyperrectangles
 - Online: incrementally modify rectangles
 - Offline version: seek small set of rectangles that cover the instances
- Important design decisions:
 - Allow overlapping rectangles?
 - Allow nested rectangles?
 - Dealing with uncovered instances?

Generalized distance functions

- Given: some transformation operations on attributes
- i: similarity = probability of transforming instance A into B by chance
- Average over all transformation paths
- Weight paths according their probability
- Uniform way of dealing with different attribute types
- Easily generalized to give distance between sets of instances

Regression trees

- Like decision trees, but:
 - Splitting criterion: minimize intra-subset variation
 - Termination criterion: std dev becomes small
 - Pruning criterion: based on numeric error measure
 - Prediction: Leaf predicts average class values of instances
 - Piecewise constant functions
 - Easy to interpret
- More sophisticated version: model trees

Separating generalized exemplars

Model trees

- Build a regression tree
- Each leaf: linear regression function
- Smoothing: factor in ancestor’s predictions
 - Smoothing formula
 - Same effect can be achieved by incorporating ancestor models into the leaves
- Need linear regression function at each node
- At each node, use only a subset of attributes
 - Those occurring in subtree
 - (+maybe those occurring in path to the root)
- Fast: tree usually uses only a small subset of the attributes

Numeric prediction

- Counterparts exist for all schemes previously discussed
 - Decision trees, rule learners, SVMs, etc.
 - (Almost) all classification schemes can be applied to regression problems using discretization
 - Discretize the class into intervals
 - Predict weighted average of interval midpoints
 - Weight according to class probabilities

Discretize the class into intervals

Generalized distance functions: numeric prediction

Model trees: numeric prediction
Pruning:
- Heuristic estimate of absolute error of LR models:
 \[e = \text{average absolute error} \]
- Greedily remove terms from LR models to minimise estimated error
- Heavy pruning: single model may replace whole subtree
- Proceed bottom up; compare error of LR model at internal node to error of subtree

Missing values
- Modify splitting criterion:
 \[\text{SDR} = \sum (T - \bar{y}_T)^2 [k - \bar{y}_T] \]
- To determine which subset an instance goes into, use surrogate splitting
 - Split on the attribute whose correlation with original is greatest
 - Problem: complex and time-consuming
 - Simple solution: always use the class
 - Test set: replace missing value with average

Nominal attributes
- Convert nominal attributes to binary ones
 - Sort attribute by average class value
 - If attribute has k values, generate \(k - 1 \) binary attributes
 - \(i/\text{ith is 0 if value lies within the first i, otherwise 1} \)
- Treat binary attributes as numeric
- Can prove: best split on one of the new attributes is the best (binary) split on original

Surrogate splitting based on class
- Choose split point based on instances with known values
 - Split point divides instances into 2 subsets
 - \(L \) (smaller class average)
 - \(R \) (larger)
 - \(m \) is the average of the two averages
 - For an instance with a missing value:
 - Choose \(L \) if class value < \(m \)
 - Otherwise \(R \)
- Once full tree is built, replace missing values with averages of corresponding leaf nodes

Pseudo-code for M5'

- Four methods:
 - Main method: MakeModelTree
 - Method for splitting: split
 - Method for pruning: prune
 - Method that computes error: subtreeError
- We'll briefly look at each method in turn
 - Assume that linear regression method performs attribute subset selection based on error

MakeModelTree

```c
MakeModelTree (instances)
{ 
  M = sd (instances) 
  for each k-valued nominal attribute 
    convert into k-1 synthetic binary attributes 
    root = node 
    root.instances = instances 
    split(root) 
    prune(root) 
    printTree(root) 
}
```
split

```java
split(node)
{
  if size(node instances) < 4 or
    node type = LEAF
  else
    node type = INTEGION
    for each attribute
      calculate the attribute's MSR
      node attribute = attribute with maximum MSR
    split(node left)
    split(node right)
}
```

prune

```java
prune(node)
{
  if node = INTEGRION then
    prune(node rightChild)
  else
    node error = linearRegression(node)
    if subtreeError(node) > error(node) then
      node type = LEAF
    
}
```

subtreeError

```java
subtreeError(node)
{
  if node = leaf, e = node right
  if node = INTEGRION then
    return size(left instances)*subtreeError(left)
                        + size(right instances)*subtreeError(right)
    else return error(node)
}
```

Rules from model trees

- PART algorithm generates classification rules by building partial decision trees
- Can use the same method to build rule sets for regression
 - Use model trees instead of decision trees
 - Use variance instead of entropy to choose node to expand when building partial tree
- Rules will have linear models on right-hand side
- Caveat: using smoothed trees may not be appropriate due to separate-and-conquer strategy

Locally weighted regression

- Numeric prediction that combines
 - instance-based learning
 - linear regression
- “Laxy”:
 - computes regression function at prediction time
 - works incrementally
- Weight training instances
 - according to distance to test instance
 - needs weighted version of linear regression
- Advantage: nonlinear approximation
- But: slow
Design decisions

- Weighting function:
 - Inverse Euclidean distance
 - Gaussian kernel applied to Euclidean distance
 - Triangular kernel used the same way
 - etc.
- Smoothing parameter is used to scale the distance function
 - Multiply distance by inverse of this parameter
 - Possible choice: distance of kth nearest training instance (makes it data dependent)

Clustering: how many clusters?

- How to choose k in k-means? Possibilities:
 - Choose k that minimizes cross-validated squared distance to cluster centers
 - Use penalized squared distance on the training data (e.g., using an MDL criterion)
 - Apply k-means recursively with k = 2 and use stopping criterion (e.g., based on MDL)
 - Seeds for subclusters can be chosen by seeding along direction of greatest variance in cluster
 (one standard deviation away in each direction from cluster center of parent cluster)
 - Implemented in algorithm called X-means (using Bayesian Information Criterion instead of MDL)

Incremental clustering

- Heuristic approach (COBWEB/CLASSIT)
- Form a hierarchy of clusters incrementally
- Start:
 - tree consists of empty root node
- Then:
 - add instances one by one
 - update tree appropriately at each stage
 - to update, find the right leaf for an instance
 - May involve restructuring the tree
- Base update decisions on category utility

Clustering weather data

<table>
<thead>
<tr>
<th>Instance</th>
<th>Temp</th>
<th>Hum</th>
<th>Win</th>
<th>Rain</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>B</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>C</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>D</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>E</td>
<td>Rainy</td>
<td>Overcast</td>
<td>Normal</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>F</td>
<td>Rainy</td>
<td>Overcast</td>
<td>Normal</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>G</td>
<td>Sunny</td>
<td>Overcast</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>H</td>
<td>Sunny</td>
<td>Overcast</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>I</td>
<td>Sunny</td>
<td>Overcast</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>J</td>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>K</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>L</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>M</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>N</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
</tbody>
</table>

Clustering weather data

<table>
<thead>
<tr>
<th>Instance</th>
<th>Temp</th>
<th>Hum</th>
<th>Win</th>
<th>Rain</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>B</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>C</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>D</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>E</td>
<td>Rainy</td>
<td>Overcast</td>
<td>Normal</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>F</td>
<td>Rainy</td>
<td>Overcast</td>
<td>Normal</td>
<td>False</td>
<td>Mild</td>
</tr>
<tr>
<td>G</td>
<td>Sunny</td>
<td>Overcast</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>H</td>
<td>Sunny</td>
<td>Overcast</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>I</td>
<td>Sunny</td>
<td>Overcast</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>J</td>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>K</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>L</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>M</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
<tr>
<td>N</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Mild</td>
</tr>
</tbody>
</table>
Final hierarchy

Example: the iris data

Clustering with cutoff

Category utility

Numeric attributes

Probability-based clustering
Finite mixtures

- Model data using a mixture of distributions
- One cluster, one distribution
 - governs probabilities of attribute values in that cluster
- Finite mixtures: finite number of clusters
- Individual distributions are normal (usually)
- Combine distributions using cluster weights

Using the mixture model

- Probability that instance \(x \) belongs to cluster \(A \):
 \[
P(A|x) = \frac{1}{A} \frac{1}{A} f(x, \mu, \sigma)
\]

 with
 \[
f(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
- Probability of an instance given the clusters:
 \[
P(x|\text{the clusters}) = \sum_i P(x|\text{cluster}_i) P(\text{cluster}_i)
\]

EM algorithm

- EM = Expectation-Maximization
 - Generalize \(k \)-means to probabilistic setting
 - Iterative procedure:
 - E ‘expectation’ step:
 Calculate cluster probability for each instance
 - M ‘maximization’ step:
 Estimate distribution parameters from cluster probabilities
 Store cluster probabilities as instance weights
 Stop when improvement is negligible

Two-class mixture model

Learning the clusters

- Assume:
 - we know there are \(k \) clusters
- Learn the clusters:
 - determine their parameters
 - i.e. means and standard deviations
 - Performance criterion:
 - probability of training data given the clusters
 - EM algorithm:
 - finds a local maximum of the likelihood

More on EM

- Estimate parameters from weighted instances

\[
\mu = \frac{\sum w_i \mu_i}{\sum w_i}, \quad \sigma^2 = \frac{\sum w_i (\mu_i - \mu)^2}{\sum w_i}
\]
- Stop when log-likelihood saturates
- Log-likelihood:

\[
\sum \log (p(x, \mu) | x, A) = p(x, \mu) | x, A)
\]
More mixture model extensions

- Nominal attributes: easy if independent
- Correlated nominal attributes: difficult
- Two correlated attributes \(\sim t_2 \) parameters
- Missing values: easy
- Can use other distributions than normal:
 - "log-normal" if predetermined minimum is given
 - "log-odds" if bounded from above and below
- Poisson for attributes that are integer counts
- Use cross-validation to estimate \(k \)

Bayesian clustering

- Problem: many parameters \(\bowtie \) EM overfits
- Bayesian approach: give every parameter a prior probability distribution
 - Incorporate prior into overall likelihood figure
 - Penalizes introduction of parameters
 - E.g. Laplace estimator for nominal attributes
 - Can also have prior on number of clusters!
- Implementation: NASA’s AUTOCLASS

Naïve Bayes assumes:
- attributes conditionally independent given the class
- Doesn’t hold in practice but classification accuracy often high
- However: sometimes performance much worse than e.g. decision tree
- Can we eliminate the assumption?

Graphical representation: directed acyclic graph, one node for each attribute
Overall probability distribution factorized into component distributions
Graph’s nodes hold component distributions (conditional distributions)
Learning Bayes nets

• Basic components of algorithms for learning Bayes nets:
 • Method for evaluating the goodness of a given network
 • Measure based on probability of training data given the network (or the logarithm thereof)
 • Method for searching through space of possible networks
 • Amounts to searching through sets of edges because nodes are fixed

Why can we do this? (Part II)

• Chain rule from probability theory:
 \[P[a_1, a_2, \ldots, a_J] = \prod_{i=1}^{J} P[a_i | a_{i-1}, \ldots, a_1] \]
 • Because of our assumption from the previous slide:
 \[P[a_1, a_2, \ldots, a_J] = \prod_{i=1}^{J} P[a_i | \text{parents of } a_i] \]

Why can we do this? (Part I)

• Single assumption: values of a node’s parents completely determine probability distribution for current node
 \[P[a_i | \text{parents of } a_i] = P[a_i | \text{parents of } a_i] \]
 • Means that node/attribute is conditionally independent of other ancestors given parents

Computing the class probabilities

• Two steps: computing a product of probabilities for each class and normalization
 • For each class value
 • Take all attribute values and class value
 • Look up corresponding entries in conditional probability distribution tables
 • Take the product of all probabilities
 • Divide the product for each class by the sum of the products (normalization)
Problem: overfitting

- Can’t just maximize probability of the training data
- Because then it’s always better to add more edges (fit the training data more closely)
- Need to use cross-validation or some penalty for complexity of the network
 - AIC measure: $AIC = -2 \log L + K$
 - MDL measure: $MDL = -2 \log L + \frac{K}{2} \log N$
- L: log-likelihood, K: number of free parameters, N: instances
- Another possibility: Bayesian approach with prior distribution over networks

Searching for a good structure

- Task can be simplified: can optimize each node separately
 - Because probability of an instance is product of individual nodes’ probabilities
 - Also works for AIC and MDL criterion because penalties just add up
- Can optimize node by adding or removing edges from other nodes
- Must not introduce cycles

The K2 algorithm

- Starts with given ordering of nodes (attributes)
- Processes each node in turn
- Greedily tries adding edges from previous nodes to current node
- Moves to next node when current node can’t be optimized further
- Result depends on initial order

Some tricks

- Sometimes it helps to start the search with a naïve Bayes network
- It can also help to ensure that every node is in Markov blanket of class node
- Markov blanket of a node includes all parents, children, and children’s parents of that node
- Given values for Markov blanket, node is conditionally independent of nodes outside blanket
- I.e. node is irrelevant to classification if not in Markov blanket of class node

Other algorithms

- Extending K2 to consider greedily adding or deleting edges between any pair of nodes
 - Further step: considering inverting the direction of edges
- TAN (Tree Augmented Naïve Bayes):
 - Starts with naïve Bayes
 - Considers adding second parent to each node (apart from class node)
 - Efficient algorithm exists

Likelihood vs. conditional likelihood

- In classification what we really want is to maximize probability of class given other attributes
 - Not probability of the instances
- But: no closed-form solution for probabilities in nodes’ tables that maximize this
- However: can easily compute conditional probability of data based on given network
- Seems to work well when used for network scoring
Data structures for fast learning

- Learning Bayes nets involves a lot of counting for computing conditional probabilities
- Naive strategy for storing counts: hash table
- Runs into memory problems very quickly
- More sophisticated strategy: all-dimensions (AD) tree
 - Analogous to 4D-tree for numeric data
 - Stores counts in a tree but in a clever way such that redundancy is eliminated
 - Only makes sense to use it for large datasets

Building an AD tree

- Assume each attribute in the data has been assigned an index
- Then, expand node for attribute i with the values of all attributes j > i
 - Two important restrictions:
 - Most populous expansion for each attribute is omitted (breaking ties arbitrarily)
 - Expansions with counts that are zero are also omitted
- The root node is given index zero

AD tree example

Discussion

- We have assumed: discrete data, no missing values, no new nodes
- Different method of using Bayes nets for classification: Bayesian multinet
 - I.e. build one network for each class and make prediction using Bayes’ rule
- Different class of learning methods for Bayes nets: testing conditional independence assertions
- Can also build Bayes nets for regression tasks