Ripple factor \(r = \frac{V_{\text{rms}}}{V_{dc}} \)

Load regulation = (no-load voltage - full-load voltage)/full-load voltage
(b)
\[V_r(\text{rms}) = \left(V_{r_p} / 2 \right)^{0.5} \]

\[V_{r_p} = \frac{V_{r_{pp}}}{2} \]

\[V_{r_{pp}} = \frac{(I_{dc}/C)(T/2)}{T = 1/f} \]

\[I_{dc} = \frac{V_{dc}}{R} \]
A full-wave rectifier circuit with 60Hz input drives a capacitor and a load. If \(C = 100\mu F \), \(RL = 2K \), and \(Vdc = 12V \) find the ripple voltage.

Find the maximum and minimum output voltages (should be easy).
(a) The diagram shows a circuit with a dc voltage level V_{dc}, a current I_{dc}, and a voltage V'_{dc} across resistor R. Capacitor C_1 is shown with an annotation indicating the dc voltage level developed across it.

(b) The diagram illustrates an ac ripple voltage developed across capacitor C_1 with a notation $V_r (\text{rms})$. Capacitor C_2 is connected in parallel to the ac ripple voltage source, and the overall circuit is terminated with resistor R_L. The ac ripple voltage $V'_r (\text{rms})$ is indicated.
\[V'_{r(rms)} \approx \frac{X_C}{R} V_r(rms) \]

- \(V'_{r(rms)} \) = ripple voltage after the RC filter
- \(V_r(rms) \) = ripple voltage before the RC filter
- \(R \) = resistor in the added RC filter
- \(X_C \) = reactance of the capacitor in the added RC filter

\[\%V_R = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\% \]

- \(V_{NL} \) = no-load voltage
- \(V_{FL} \) = full-load voltage
\[V_{dc} = 150 \text{ V} \]
\[V_r \text{ (rms)} = 15 \text{ V} \]

- Full-wave rectifier
- \(R = 500 \Omega \)
- \(C_1 = 15 \mu \text{F} \)
- \(C_2 = 10 \mu \text{F} \)
- \(R_L = 5 \text{ k}\Omega \)
A full-wave rectifier driven by household voltage 60Hz 115v\textsubscript{rms} feeds a 2000\textmu F capacitor in parallel with a 1000 ohm load. Determine the magnitude of the output ripple voltage.
Regulator

\[V_i \] (unregulated input) → Control element → Sampling circuit → Comparator circuit → Reference voltage → Control element → \[V_o \] (regulated output)

15_Power Supplies

16 of 25
Determine the value of the output voltage in the circuit below:

\[V_x = 10.7 \]
\[I_x = \frac{V_x}{R_2} = \frac{10.7}{2.2k} = 4.86mA \]
\[V_o = I_x \times (R_1 + R_2) = 4.86mA \times 5.5k = 26.75V \]
Current-limiting voltage regulator

![Diagram of a current-limiting voltage regulator with components labeled: V_i, R_3, V_z, Q_1, R_{SC}, Q_2, R_1, R_2, R_L, I_L, and V_o.]