1. In the circuit below assume the diodes are ideal; i.e., 0.7V when turned on.
 a) Sketch V_o vs. V_1 for V_1 ranging between -15 and +15 volts.
 b) Determine and label the slopes of all segments.
 c) Determine and label the values of V_o & V_i at points where the slope changes and where
 the slope is flat.

 \[-9.7 = \frac{2}{3} \times V_1 \]
 \[V_1 = -14.55 \]

 \[6.7 = \frac{5}{6} \times V_1 \]
 \[V_1 = 8.04 \]

 \[V_o = 6.7 \times 4/5 = 5.36 \]

 D1 turn on
 \[V_i \]
 \[V_o \]

 D2 turn on
 \[V_i \]
 \[V_o \]

 Slopes
 \[V_i \text{ less than } -9.7 \]
 \[V_i \text{ greater than } 6.7 \]
 \[V_i \text{ in-between} \]
$V_o = 5.36$
$V_i = 8.04$

$V_o = -9.7$
$V_i = -14.55$

Slope = $\frac{2}{3}$
2. Analyze the circuit. \(\beta = 173 \) and \(V_{BE} = 0.7 \text{v} \).

Do NOT neglect the base current when doing the calculations.

a) \(I_B \)

b) \(I_E \)

c) \(I_C \)

d) \(V_{CE} \)

\[
\begin{align*}
V_B &= 15 \times 40K/15K = 4.091 \\
R_B &= 40K/15K = 10.91K \\
I_B &= (V_B - 0.7)/(R_B + R_3 + \beta R_e) = 3.391/127.9K = 0.0265 \text{mA} \\
I_E &= (1 + \beta)I_B = 4.6128 \text{mA} \\
I_C &= \beta I_B = 4.586 \text{mA} \\
V_{CE} &= 20 - I_C R_C - I_E R_E = 20 - 9.173 - 2.306 = 3.521
\end{align*}
\]
3. An AC analysis of this amplifier and compute input and output impedances. Use the small-signal model of the transistor and appropriate models of the capacitors and DC supply.

\[\beta = 45, \quad r_o = \infty, \quad r_e = 10 \text{ ohms} \]

a) Compute \(Z_{it} = V_b/it \) (voltages and currents are AC)
b) Compute \(Z_x = V_x/ix. \)
c) Compute \(Z_s = V_s/is. \)
d) Compute \(Z_{ot} = V_c/iot \) (iot, would be produced if a AC test voltage, \(V_o \), was connected to the circuit; note that \(V_c = V_o \)).
e) Compute \(Z_o = V_o/io \)....(io, would be produced if a AC test voltage, \(V_o \), was connected to the circuit).

\[
\begin{align*}
Z_{it} &= (1+B)(r_e + RE1) = 2.25K \\
R_1//R_2 &= 10K \\
Z_x &= R_1//R_2//(Z_{it}+Rs2) = 2.17 \\
Z_{it}+Rs2 &= 2.75K \\
Z_x &= 2.136K \\
Z_s &= Rs + Z_x = 2.387K
\end{align*}
\]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zit</td>
<td>2.25</td>
</tr>
<tr>
<td>Zs2</td>
<td>2.75</td>
</tr>
<tr>
<td>R1//R2</td>
<td>10</td>
</tr>
<tr>
<td>R1//R2//Zs2</td>
<td>2.156863</td>
</tr>
<tr>
<td>Zs</td>
<td>2.206863</td>
</tr>
<tr>
<td>Zot</td>
<td>2.2</td>
</tr>
<tr>
<td>Zo</td>
<td>2.049689</td>
</tr>
</tbody>
</table>
4. Graph solution for J-FET circuit.
 a) Write the loop-current equation involving V_G, V_{GS}, V_1, and V_{RS}.
 b) Plot I_D vs. V_{GS} on the 1st graph.
 c) Find and label on the 1st graph;
 1) I_{DQ}.
 2) V_{GSQ}
 d) Write the loop-current equation involving V_{DD}, V_{DS}, V_1, and V_{RD} and V_{RS}.
 e) Plot I_D vs. V_{DS} on the 2nd graph.
 f) Find and label V_{DSQ} on the 2nd graph.

\[
\begin{align*}
VG &= 20 \times 0.6 / 2.4 = 5 & \text{5each} \\
V_{GS} &= 5 - 1 - ID \times RS \\
ID \text{ at } V_{GS} = 0 \text{ is equal to } 4/2K = 2mA \\
V_{DS} &= 20 - 1 - ID(RD + RS) \\
ID \text{ at } V_{DS} = 0 \text{ is equal to } 20/3K = 6.67 \text{ mA}
\end{align*}
\]
\[V_{GS} \]

\[V_{DS} \]

- Gate-Source Voltage (volts)
- Drain-Source Voltage (volts)
- Drain Current (mA)

\[I_D \]
Scores
1. ______
2. ______
3. ______
4. ______

Total ______