Kuratowski’s Theorem

Kuratowski subgraph of a graph: A subgraph which can be described as subdivision of K_5 or $K_{3,3}$ (interrupt edges by degree 2 vertices).

Petersen Graph: Satisfies $e \leq 3v - 6$ but not $(k - 2)e \leq kv - 6$ using $k = 5$, hence non-planar. Circle-chord method yields a K_{33} configuration: see illustration.

Branch and subdivision vertices in a Kuratowski subgraph: Branch vertices are the original vertices of K_5 and K_{33}. Subdivision vertices are the inserted vertices of degree 2.

Minimal non-planar graph: A non-planar graph such that every proper subgraph is planar.

X-lobe of a graph G: Let X be subset of vertices of G and let G_i be a connected component of $G - X$. An X-lobe of G is the induced subgraph $G[G_i + X]$.

Edge contraction: Let G be a graph and let $e = \{x, y\}$ be an edge in G. $G \cdot e$ is the graph obtained from G by shrinking the edge xy down to a point z. In the process we lose the vertices x and y, gain the vertex (xy), and any edge xv or yv in G becomes the edge $(xy)v$ in $G \cdot e$.

Example: The Petersen graph can be contracted down to K_5. See illustration. If G is planar then $G \cdot e$ is planar. So if some contraction of G is nonplanar then G is nonplanar. Hence P is nonplanar.

Lemma 1: Let C be a cycle of a planar graph G. Then there is a way to draw G so that the edges of C all border the infinite region.

Proof: Stuff everything inside as before.

Lemma 2: Every minimal non-planar graph G (all proper subgraphs planar) is 2-connected.

Proof: First note that any minimal non-planar graph must be connected. We must show that there are no cut-vertices.

Suppose x is a cut vertex. Let $G - x$ have components H_1, \ldots, H_k. Each lobe $G[H_i + x]$ is planar by minimality of G. Each non-tree among these can be redrawn so that x is bordering the infinite region. Each tree among them has x bordering the infinite region. These can be glued together to form a planar representation of G. Contradiction. So there are no cut vertices.
Lemma 3: Suppose $G - x - y$ is not connected. If G is non-planar then adding the edge xy to some $\{x, y\}$-lobe of G yields a non-planar graph.

Proof: Let the components of $G - x - y$ be H_1, \ldots, H_k. Suppose every $G[H_i + x + y] + xy$ is planar. Draw each such configuration so that the edge xy borders the infinite region. There is a way to glue all these things together to create a planar graph, and this includes G as a subgraph. Contradiction. So some $G[H_i + x + y] + xy$ is non-planar.

Lemma 4: If there exists a minimal example G of a non-planar graph with no Kuratowski subgraph, then it is 3-connected.

Proof: G is a minimal non-planar graph. By Lemma 2 is G is 2-connected. If G is not 3-connected then it has a minimal vertex cut $\{x, y\}$. Let the connected components of $G - x - y$ be H_1, \ldots, H_k. Suppose every $G[H_i + x + y] + xy$ is planar. Draw each such configuration so that the edge xy borders the infinite region. There is a way to glue all these things together to create a planar graph, and this includes G as a subgraph. Contradiction. So some $G[H_i + x + y] + xy$ is non-planar.

Lemma 5: Every 3-connected graph G with at least 5 vertices has an edge e such that $G \cdot e$ is also 3-connected.

Proof: Suppose this edge cannot be found. Let G be 3-connected and let $e = xy$ be an edge in G. Since $G \cdot e$ is not 3-connected, it has a vertex cut $\{u, v\}$. We claim that $(xy) = u$ or $(xy) = v$.

Suppose in fact $(xy) \neq u$ and $(xy) \neq v$. Then there must be some vertex in $(G \cdot e) - u - v$ with no path to (xy). Since G has $v \geq 5$ vertices, there must be some vertex in $G - u - v$ with no path to x and no path to y. Contradiction.

So now we know that $G \cdot e$ has a separating set of the form $\{(xy), z\}$. This creates a separating set $\{x, y, z\}$. Of all ways to choose the edge $e = xy$, choose one which maximizes the vertices in the largest connected component of $G - x - y - z$. Since $\{x, y, z\}$ is a minimal vertex cut of G, x, y and z have edges to each component of $G - x - y - z$. Now let H be the largest component of $G - x - y - z$ and let H' be another component of $G - x - y - z$. Let u be a neighbor of z in H'. Let v be such that G has a separating set
\{z, u, v\}. To achieve a contradiction we will find a connected component of \(G - z - u - v\) that is larger than \(H\).

First note that \(G[H + x + y - v]\) is connected: Consider the cases.

Case 1: \(v = x\). Then \(G[H + y]\) is connected.

Case 2: \(v = y\). Then \(G[H + x]\) is connected.

Case 3: \(v \in H\). We know that \(G - z - v\) is connected. Given two vertices in \(G[H + x + y - v]\), find a path between them in \(G - z - v\) and shrink it to a path in \(G[H + x + y - v]\).

Now that we know that \(G[H + x + y - v]\) is connected, it has to belong to a connected component \(H''\) of \(G - z - u - v\) which has at least as many vertices as \(G[H + x + y - v]\) and strictly greater vertices than \(H\). Contradiction. So yes, we can find \(e \in G\) such that \(G \cdot e\) is 3-connected.

Lemma 6: If \(G \cdot e\) has a Kuratowski subgraph then so does \(G\).

Proof: Let \(K\) be a Kuratowski subgraph in \(G \cdot e\). Write \(e = xy\). If \((xy) \notin K\) then \(K\) is a Kuratowski subgraph of \(G\). Now suppose \((xy) \in K\). If \((xy)\) is a subdivision vertex of \(K\), let the edges it belongs to be \(u(xy)\) and \((xy)v\).

By considering the possibilities in \(G\) we can see that \(G\) has a Kuratowski subgraph. If \((xy)\) is a branch vertex of \(K\) and exactly one of the edges \((xy)u_i\) in \(K\) corresponds to \(xu_i\) in \(G\) and the rest correspond to \(yu_i\) in \(G\) then \(x\) is a subdivision vertex of a Kuratowski subgraph in \(G\) (or \(y\) if the roles of \(x\) and \(y\) are reversed). The only remaining case is when \(K\) is a subdivision of \(K_5\) and the four edges \((xy)u_1, (xy)u_2, (xy)u_3, (xy)u_4\) in \(K\) correspond to \(xu_1, xu_2, yu_3, yu_4\) in \(G\). Writing the branch vertices of \(K\) as \((xy), v_1, v_2, v_3, v_4\), there are paths joining each \(v_i\) to \(v_j\) as well as paths from \(x\) to \(v_1\) and \(v_2\) and paths from \(y\) to \(v_3\) and \(v_3\), as well as the edge \(xy\). Tossing the \(v_1v_2\) path and the \(v_3v_4\) path, we obtain a subdivision of \(K_{33}\) out of the remaining paths, with branch vertices \(x, v_3, v_4\) on the right and branch vertices \(y, v_1, v_2\) on the left.

Lemma 7: If \(G\) does not have a Kuratowski subgraph and \(G \cdot e\) is 3-connected and planar, then \(G\) is planar.

Proof: We know by Lemma 6 that \(G \cdot e\) does not have a Kuratowski subgraph. Now draw a planar representation of \(G \cdot e\). Removing \((xy)\), the remaining graph is 2-connected. Therefore \((xy)\) and the edges to its neighbors in \(G \cdot e\) are bounded by a cycle \(C\). The vertices of \(C\) belong to \(G\). The neighbors
of x and y in G belong to C. Let the neighbors of x be x_1, \ldots, x_j in cyclic order around C and let the neighbors of y be y_1, \ldots, y_k in cyclic order around C. Note that there could be some overlap among these sets of neighbors. It is clear that $G - x$ and $G - y$ are planar since they are isomorphic to subgraphs of $G \cdot e$, and if x has ≤ 1 neighbors then we can insert y and its edges to x, y_1, \ldots, y_k to create a planar representation of G. Now assume that x has at least 2 neighbors in C. We will consider the ways y_1, \ldots, y_k can be distributed around C.

Case 1: y has at least three neighbors z_1, z_2, z_3 in common with x. Using C we can create a K_5 subdivision in G. Contradiction. So Case 1 cannot happen.

Case 2: y shares at most two neighbors in common with x and the rest of neighbors of y all fall between two consecutive neighbors x_i, x_{i+1} of x. Then we can insert y in the triangle formed by x, x_i, x_{i+1} and draw all the edges out of y to create a planar representation of G.

Case 3: y shares at most two neighbors in common with x but the rest of the neighbors of y do not fall between two consecutive neighbors x_i, x_{i+1} of x. In other words, y has neighbors z_1 and z_2 that alternate with neighbors x_i and x_{i+1} of x. Using C we can create a $K_{3,3}$ subdivision in G. Contradiction. So Case 3 cannot happen.

Theorem: Every graph that does not have a Kuratowski subgraph is planar.

Proof: If the theorem is false, then there is a minimal counterexample, G. G is non-planar, does not have a Kuratowski subgraph, and by Lemma 4 G is 3-connected. Since K_4 and its subgraphs are planar, G must have at least 5 vertices. By Lemma 5, G has an edge e such that $G \cdot e$ is 3-connected. By Lemma 6, $G \cdot e$ does not have a Kuratowski subgraph. By minimality of G, $G \cdot e$ must be planar. By Lemma 7, G must be planar. Contradiction. So the theorem is true.