Computing the rank and nullity of a matrix

Example:

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 5 \\
1 & 2 & 3 & 6 \\
1 & 2 & 3 & 7 \\
1 & 2 & 3 & 8 \\
\end{bmatrix}
\]

By definition, the rank of \(A \) is the dimension of the image of \(f \) and the nullity is the dimension of the kernel of \(f \), where \(f \) is the linear mapping defined by \(f : \mathbb{R}^4 \to \mathbb{R}^5 \) defined by \(f(v) = Av \), interpreting \(v \) as a \(4 \times 1 \) matrix. The image of \(f \) is the column space of \(A \), which we know has dimension equal to the dimension of the row space of \(A \). In class on Friday I described an algorithm for finding a basis for the row space: Let the rows be \(R_1, R_2, R_3, R_4, R_5 \). We wish to modify these rows by elementary operations without changing the span of these vectors, but in such a way that we can easily pick out a basis for the row space. The operations are these: interchange two rows, or multiply a row by a constant, or add a multiple of one row to another row. Do these operations in such a way that we obtain either zero vectors or vectors with unique leading terms (positions of first non-zero entry are all different). Here’s what happens to our example: First, subtract the first row from the others. This yields

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 4 \\
\end{bmatrix}
\]

Next, subtract 2 copies of row 2 from row 3, 3 copies of row 2 from row 4, and 4 copies of row 2 from row 5. This yields

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

So now we can see that the row space is spanned by the first two rows, and they are obviously linearly independent. Hence the rank of \(A \) is 2.
The same calculations we made in finding a basis for the row space can be used to find a basis for the kernel of \(f \). By definition, the kernel of \(f \) is

\[
\begin{cases}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} \\
\begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 5 \\
1 & 2 & 3 & 6 \\
1 & 2 & 3 & 7 \\
1 & 2 & 3 & 8 \\
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}.
\end{cases}
\]

This is equivalent to solving the system of equations

\[
\begin{align*}
1x_1 + 2x_2 + 3x_3 + 4x_4 &= 0 \\
1x_1 + 2x_2 + 3x_3 + 5x_4 &= 0 \\
1x_1 + 2x_2 + 3x_3 + 6x_4 &= 0 \\
1x_1 + 2x_2 + 3x_3 + 7x_4 &= 0 \\
1x_1 + 2x_2 + 3x_3 + 8x_4 &= 0.
\end{align*}
\]

Each of the row operations we performed above we can perform on this system of equations without changing the solution set. We will arrive at the system

\[
\begin{align*}
1x_1 + 2x_2 + 3x_3 + 4x_4 &= 0 \\
0x_1 + 0x_2 + 0x_3 + 1x_4 &= 0 \\
0x_1 + 0x_2 + 0x_3 + 0x_4 &= 0 \\
0x_1 + 0x_2 + 0x_3 + 0x_4 &= 0 \\
0x_1 + 0x_2 + 0x_3 + 0x_4 &= 0.
\end{align*}
\]

We can classify all the variables now into two types: those that appear as a leading term in one of the equations, and those that don’t. In our case, \(x_1 \) and \(x_4 \) appear as leading terms, and \(x_2 \) and \(x_3 \) don’t. We can choose values for \(x_2 \) and \(x_3 \) independently and at random, and these determine the values of the leading variables. Setting \(x_2 = a \) and \(x_3 = b \), the equations now read

\[
\begin{align*}
1x_1 + 2a + 3b + 4x_4 &= 0 \\
1x_4 &= 0.
\end{align*}
\]
Working from the bottom equation to the top one, we see that $x_4 = 0$ and $x_1 = -2a - 3b$. So the typical element in the kernel of f is

$$
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{bmatrix} =
\begin{bmatrix}
 -2a - 3b \\
 a \\
 b \\
 0 \\
\end{bmatrix}.
$$

This can be resolved into

$$
\begin{bmatrix}
 -2a \\
 a \\
 0 \\
\end{bmatrix} + \begin{bmatrix}
 -3b \\
 0 \\
 b \\
\end{bmatrix} = a \begin{bmatrix}
 -2 \\
 1 \\
 0 \\
\end{bmatrix} + b \begin{bmatrix}
 -3 \\
 0 \\
 1 \\
\end{bmatrix}.
$$

Therefore $\ker f$ is spanned by the set \{ $\begin{bmatrix}
 -2 \\
 1 \\
 0 \\
\end{bmatrix}$, \begin{bmatrix}
 -3 \\
 0 \\
 1 \\
\end{bmatrix}$ \}. The positions of the 1s in these vectors force them to be linearly independent. Hence this is a basis for the kernel of f and the nullity is 2.