Math 345-60 Abstract Algebra I

Questions for Section 20: Fermat’s and Euler’s Theorem

1. Some preliminaries: let us carefully work out the addition and multiplication table for the ring \(\mathbb{Z}/n\mathbb{Z} \). By definition, this set consists of the cosets \([a] = a + n\mathbb{Z} = \{a + nk : k \in \mathbb{Z}\} \). We will define \([a] + [b] = [a + b]\) and \([a][b] = [ab]\). We must be careful to verify that these operations are well-defined. For example, if \(n = 5 \) then we have \([2] = [7] \) and \([4] = [-1]\), so we should have \([2 + 4] = [7 + (-1)]\) and \([2 \cdot 4] = [7 \cdot (-1)]\). We will verify this in the abstract. Also, note that \([a] + [b] - [a] = 2\). First, we’ll show that if \(a \) and \(b \) are distinct elements of \(\mathbb{Z}/n\mathbb{Z} \) then \(a + b = a' + b' \) if and only if \(p - q \) is divisible by \(n \). Reason: \([p] = [q] \iff p \in [q] \iff p = q + nk \iff n|p - q\). Note also that if \(0 \leq a < b < n \) then \([a] = [b]\) implies \(n|(a - b) \) implies \(a - b = 0 \) implies \(a = b \). So the distinct elements of \(\mathbb{Z}/n\mathbb{Z} \) are \([0],[1],\ldots,[n-1]\).

2. First, we’ll show that if \([a] = [a']\) and \([b] = [b']\) then \([a] + [b] = [a'] + [b']\). We need only verify that \(n \) divides \(a + b - a' - b' \). We have \(a - a' = nj \) and \(b - b' = nk \), therefore \(a + b - a' - b' = n(j + k)\).

3. Second, we’ll show that \([ab] = [a'b']\). We have \(a - a' = nj \) and \(b - b' = nk \), therefore \(ab - a'b' = ab - a'b + a'b - a'b' = n(jb + a'k)\).

4. Theorem 20.6: Let \(G_n \) denote the subset of \(\mathbb{Z}/n\mathbb{Z} \) defined by \(G_n = \{[a] : \gcd(a,n) = 1\} \). For example, \(G_{12} = \{[1],[5],[7],[11]\}\). Then \(G_n \) is an abelian group under multiplication of cosets.

Proof: First, we’ll show that \(G_n \) is closed with respect to multiplication. Suppose that \([a] \in G_n \) and \([b] \in G_n \). Then \(\gcd(a,n) = \gcd(b,n) = 1 \). Therefore we can find \(p, q, r, s \in \mathbb{Z} \) such that \(pa + qn = rb + sn = 1 \). Therefore \(1 = (pa+qn)(rb+sn) = pr(ab) + (pas+qnr+qns)n \), therefore \(\gcd(ab,n) = 1 \), therefore \([a][b] = [ab] \in G_n \). We have \([a][b] = [ab] = [ba] = [b][a]\) for all \([a],[b] \in G_n \). Next, we’ll argue that multiplication is associative in \(G_n \). We have \([a]([b][c]) = [a][bc] = [a(bc)] = [(ab)c] = [ab][c] = ([a][b])[c]\). Since \(\gcd(1,n) = 1 \), \([1] \in G_n \), and this is the identity element \(e \) in \(G_n \). Finally, we show that for each \([a] \in G_n \) there exists \([b] \in G_n \) such that \([a][b] = [b][a] = e = [1]\). Using \(pa + qn = 1 \), we can see that \(\gcd(p,n) = 1 \) and that \(pa - 1 = n(-q) \) is divisible by \(1 \). Therefore \([p][a] = [pa] = [1]\).

5. Note: \(G_n \) is a finite group. To see this, let \([a] \in G_n \) be given. Write \(a = nq + r, \ 0 \leq r < n \) by the division algorithm. Then \(a - r = nq \) is divisible by \(n \), therefore \([a] = [r]\). Note that \(\gcd(a,n) = 1 \implies pa + qn = 1 \implies [a] \in G_n \).
The notation for $|G_n|$ is $\phi(n)$, the number of positive integers $\leq n$ which are relatively prime to n. For example, $\phi(12) = 4$.

6. **Euler’s Theorem (20.8):** If a is an integer relatively prime to n then $a^{\phi(n)} - 1$ is divisible by n.

Proof: In G_n we have $[a^{\phi(n)}] = [a]^{\phi(n)} = [a]^{[G_n]} = e = [1]$, therefore $a^{\phi(n)} - 1$ is divisible by n.

Example: $n = 12$, $a = 7$, $\phi(12) = 4$ and $a^{\phi(n)} - 1 = 7^4 - 1 = 2400 = 200 \cdot 12$.

7. **Little Theorem of Fermat (20.1):** If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1} - 1$.

Proof: a is relatively prime to p. $\phi(p) = p - 1$. Now use Euler’s Theorem.

8. **Example 20.5:** For each $n \in \mathbb{Z}$, $n^{33} - n$ is divisible by 15. **Proof:** Suppose that $n^{33} - n$ is not divisible by 15. Then n is not divisible by 15. Therefore n is not divisible by 3 or not divisible by 5. Suppose n is not divisible by 3. Then it is relatively prime to 3 since 3 is prime. Therefore $n^2 - 1$ is divisible by 3, therefore $[n^2] = [1]$ in $\mathbb{Z}/3\mathbb{Z}$, therefore $[n^{33}] = [n][n^2]^{16} = [n][1]^{16} = [n]$, therefore 3 divides $n^{33} - n$, therefore 15 divides $n^{33} - n$: contradiction. So n must not be divisible by 5. Then it is relatively prime to 5 since 5 is prime. Therefore $n^4 - 1$ is divisible by 5, therefore $[n^4] = [1]$ in $\mathbb{Z}/5\mathbb{Z}$, therefore $[n^{33}] = [n][n^4]^8 = [n][1]^8 = [n]$, therefore 5 divides $n^{33} - n$, therefore 15 divides $n^{33} - n$: contradiction. So $n^{33} - n$ must be divisible by 15. For example, $2^{33} - 2 = 8589934590 = 15 \cdot 572662306$.

9. **Corollary 20.13:** The congruence $ax \equiv b \mod m$ has a solution x if and only $d | b$, where $d = \gcd(a, m)$. If $d | b$, then there are exactly d possibilities for $[x]$ in G_m.

Proof: Suppose $ax \equiv b \mod m$ has a solution x. This means that $ax - b$ is divisible by m, hence divisible by d, which implies $[ax] = [b]$ in $\mathbb{Z}/d\mathbb{Z}$. Since $a - 0$ is divisible by d, $[a] = [0]$, therefore $[b] = [ax] = [a][x] = [0][x] = [0]$, therefore $b - 0$ is divisible by d. Conversely, suppose b is divisible by d. Write $a = a_0d$, $m = m_0d$, $b = b_0d$. We know that $\gcd(a_0, m_0) = 1$, therefore $ra_0 + sm_0 = 1$ for some $r, s \in \mathbb{Z}$. Multiplying this through by $b = b_0d$, we obtain $ra_0b_0d + sm_0b_0d = b$, i.e. $arb_0 + msb_0 = b$, i.e. $a(rb_0) - b = m(-sb_0)$.

$p(nq + r) + qn = 1 \Rightarrow pr + (pq + q)n = 1 \Rightarrow \gcd(r, n) = 1$. So the elements in G_n can be represented by $[r], 0 \leq r < n$, which satisfy $\gcd(r, n) = 1$. Note that this does not include $r = 0$, because $\gcd(0, n) = n$ and $n > 1$ in general.
Therefore, setting $x = rb_0$, we see that $ax - b$ is divisible by m, hence $ax \equiv b \mod m$.

Now assume that there is at least one solution to $ax \equiv b \mod m$. We will count the number of solutions modulo m, i.e. the distinct solutions to $[a][x] = [b]$ in $\mathbb{Z}/m\mathbb{Z}$. First, we know that $a = a_0d$ and $b = b_0d$, so we will express this as $[a_0d][x] = [b_0d]$. $[x]$ is a solution if and only if $a_0dx - b_0d$ is divisible by m if and only if $a_0x - b_0$ is divisible by m_0 if and only if $[a_0][x] = [b_0]$ in $\mathbb{Z}/m_0\mathbb{Z}$. So when can $[a_0][x] = [a_0][y]$ in $\mathbb{Z}/m_0\mathbb{Z}$? Answer: when $m_0|(a_0x - a_0y)$. That is, when $m_0|a_0(x - y)$. Since m_0 and a_0 are relatively prime, this can only occur when $m_0|(x - y)$. Let x be the smallest solution in the range $\{0, 1, \ldots, m - 1\}$. Then solutions \geq this are $x, x + m_0, x + 2m_0, \ldots$. We must count how many of these solutions lie in $\{0, 1, \ldots, m - 1\}$. First note that $x < m_0$, otherwise $y = x - m_0$ is a smaller solution in $\{0, 1, \ldots, m - 1\}$. Therefore $x + (d - 1)m_0 = x + m - m_0 < m$ is a solution. Hence we have at least d distinct solutions, namely $x, x + m_0, \ldots, x + (d - 1)m_0$. The next largest solution is $x + dm_0 = x + m$, which does not belong to $\{0, 1, \ldots, m - 1\}$. So there are exactly d solutions for x.

10. See Examples 20.14 and 20.15, page 188.

Homework for Section 20, due ??? (only the starred problems will be graded):

$7^*, 8^*, 9^*, 10^*, 15^*, 17^*, 29^*, 30^*$

Hints:

10. This is the same as computing $[7^{1000}] = [7]^{1000}$ in $\mathbb{Z}/24\mathbb{Z}$ and reducing it to $[r]$ where $0 \leq r < 24$. You will need to compute $\phi(24)$. Then Euler’s Theorem says $[7]^{\phi(24)} = [1]$. You can use this result to simplify $[7]^{1000}$.

29. Similar to Example 20.5, page 185 (see also Comment 8 in the notes above).

30. Find a suitable prime number p, different from the divisors of 383838, such that $n^{37} - n$ is divisible by p. Then it will be divisible by all the divisors of 383838 and divisible by p, and since these are distinct primes, the Fundamental Theorem of Arithmetic says that the product of all these primes divides $n^{37} - n$. That is, 383838p divides $n^{37} - n$.

3