Math 345-60 Abstract Algebra I

Questions for Section 19: Integral Domains

1. Let R be a ring. What does it mean for an element $a \in R$ to be a zero-divisor?

2. Let $R = \mathbb{Z}_{30}$. Find all the zero-divisors in R.

3. Let $R = M_2(\mathbb{Z}_4)$, the ring of all 2×2 matrices with coefficients in \mathbb{Z}_4. Find all the zero-divisors in R.

4. Define integral domain.

5. Prove that \mathbb{Z}_5 is an integral domain.

6. Here’s a proof that \mathbb{Z}_n is an integral domain if and only if n is prime: Assume \mathbb{Z}_n is an integral domain. We will prove that n is prime. If it isn’t, then $n = ab$ for some $0 < a < n$, $0 < b < n$. Therefore $[a]_n \neq [0]_n$ and $[b]_n \neq 0$, yet $[a]_n[b]_n = [ab]_n = [n]_n = [0]_n$, which contradicts the fact that \mathbb{Z}_n has no zero-divisors. Hence n is prime. Conversely, suppose that n is prime. Suppose that $[a]_n[b]_n = [0]_n$ in \mathbb{Z}_n. Then $[ab]_n = [0]_n$, therefore $ab \in [0]_n$, therefore ab is a multiple of n, therefore $n|ab$, therefore by unique factorization into primes $n|a$ or $n|b$, therefore $a \in [0]_n$ or $b \in [0]_n$, therefore $[a]_n = [0]_n$ or $[b]_n = [0]_n$. Hence \mathbb{Z}_n has no zero divisors and is an integral domain.

7. Let $n \in \mathbb{Z}$ be given. We will show that the only zero-divisors in \mathbb{Z}_n are those numbers of the form $[a]_n$ where $\gcd(a, n) > 1$ and $1 \leq a < n$. First suppose $\gcd(a, n) = d > 1$, where $1 \leq a < n$. Write $n_0 = \frac{n}{d} \in \mathbb{Z}$. Then $1 < n_0 < n$, therefore $[n_0]_n \neq [0]_n$. Also, write $a_0 = \frac{a}{d} \in \mathbb{Z}$. We have $[a]_n[n_0]_n = [a_0]_n = [a]_n[n]_n = [a_0]_n[0]_n = [0]_n$, hence $[a]_n$ is a zero divisor. Now consider $r, s \in \mathbb{Z}$ such that $ra + sn = 1$. This implies $[r]_n[a]_n = [1]_n$. Now suppose $[a]_n[b]_n = [0]_n$. Then $[b]_n = [r]_n[a]_n[b]_n = [r]_n[0]_n = [0]_n$. Hence $[a]_n$ is not a zero divisor.

8. We’ll prove that \mathbb{Z}_p is a field when p is a prime number. All we require is that $[a]_p$ have a multiplicative inverse in \mathbb{Z}_p when $1 \leq a < p$. Since p is prime and $1 \leq a < p$, we must have $\gcd(a, p) = 1$. So there is a solution to $ra + sp = 1$ among the integers. This implies $[r]_p[a]_p = [1]_p$.

1
9. The characteristic of a ring is the smallest positive integer \(n \) such that
\[r + r + \cdots + r = 0 \text{ (} n \text{ summands)}. \]
For example, let \(c \) be the characteristic of \(\mathbb{Z}_n \). Then
\[c \leq n \text{ because } [a]_n + \cdots + [a]_n = [na]_n = [0]_n \text{ (} n \text{ summands)}. \]
Also,
\[c \geq n \text{ because otherwise } [1]_n + [1]_n + \cdots + [1]_n = [c]_n \neq [0]_n \text{ (} c \text{ summands)}. \]
Therefore
\[c = n. \]

Theorem: the characteristic \(c \) of an integral domain \(D \) must be a prime number.
Proof: first we'll prove that \(c \) is the smallest positive integer \(k \) such that
\[1 + 1 + \cdots + 1 = 0 \text{ (} k \text{ summands)} \]
in \(D \). Clearly \(k \leq c \) because \(c \) summands does produce zero. Suppose
\[1 + 1 + \cdots + 1 = 0 \text{ (} k \text{ summands)}. \]
Multiplying through by \(r \in R \) we get
\[r + r + \cdots + r = 0 \text{ (} k \text{ summands)}. \]
Therefore \(c \leq k \). Now suppose \(c \) is not a prime number. Then it factors as
\[c = pq \text{ for two positive integers } p, q \text{ smaller than } c. \]
Let
\[x = 1 + 1 + \cdots + 1 \text{ (} p \text{ summands)} \text{ and } y = 1 + 1 + \cdots + 1 \text{ (} q \text{ summands)}. \]
Then
\[x \neq 0 \text{ and } y \neq 0, \text{ yet } xy = 1 + 1 + \cdots + 1 = 0 \text{ (} pq \text{ summands)}. \]
Contradiction: cannot happen in an integral domain. Therefore \(c \) is prime.

Homework for Section 19, due ??? (only the starred problems will be graded):

1, 2*, 10*, 14*, 17, 26*

Hints:
2. If we were dealing with real numbers we would solve this via
\[3^{-1}3x = 3^{-1}2, \]
therefore \(x = 3^{-1}2 \). Only now you must find \(3^{-1} \) in \(\mathbb{Z}_7 \) and \(\mathbb{Z}_{23} \).

26(a). In parts (a) through (d) we must not assume that \(R \) is commutative.
A division ring satisfies all the axioms of a field except one: multiplication is
not necessarily commutative. To show that \(R \) has no zero divisors, let \(x \neq 0 \) we given. We must show that if \(xz = 0 \) then \(z = 0 \), and that if \(zx = 0 \) then \(z = 0 \). I will do one of these (do the other one). Suppose \(xz = 0 \). Since \(x \neq 0 \) there exists a unique \(y \in R \) such that \(xyx = x \). Observe that
\[x(y + z)x = xyx + xzx = x + 0x = x, \]
therefore by uniqueness \(y = y + z \). This implies \(z = 0 \).

26(b). Argue that \(a(bab)a = a \), then use uniqueness.

26(c). It is not assumed to begin with that \(R \) has a multiplicative identity element (acting as 1). But we are given that \(R \) has at least two elements, and one of them is 0, so call the other one \(r \). Then there exists a unique \(s \) such that
\(rsr = r \). A logical candidate for 1 is \(sr \). So we must show
\[srx = x = xsr \]
for all \(x \in R \). I will prove that
\[xsr = x \]
for all \(x \in R \) (do the other one).
Note that we have \(r(srx - x) = rsrx - rx = rx - rx = 0 \). By part (a), this implies \(srx - x = 0 \), which implies \(srx = x \).

26(d). Let \(x \neq 0 \). We must find \(y \in R \) such that \(xy = 1 = yx \). I will prove that \(y \) can be found such that \(xy = 1 \). You will have to prove that \(yx = 1 \) using the same value of \(y \). Let \(x \neq 0 \) be given. Then there exists a unique \(y \in R \) such that \(xyx = x \). Subtracting, \(xyx - x = 0 \). Factoring, \((xy - 1)x = 0 \). Since there are no zero-divisors, \(xy - 1 = 0 \), therefore \(xy = 1 \).