Math 316-01 Intermediate Analysis

Questions for Section 22: Properties of Continuous Functions

1. Let \(f : D \to \mathbb{R} \) be continuous at each \(c \in D \). If \(D \) is compact then \(f(D) = \{ f(c) : c \in C \} \) is compact. Proof: Let \(\mathcal{F} = \{ G_i : i \in I \} \) be an open cover of \(f(D) \). Then \(\{ f^{-1}(G_i) : i \in I \} \) covers \(D \). By Theorem 21.14, we know that \(f^{-1}(G_i) = H_i \cap D \) for some open set \(H_i \). Therefore \(\{ H_i \cap D : i \in I \} \) covers \(D \). Therefore \(\{ H_i : i \in I \} \) is an open cover of \(D \). By compactness of \(D, D \subseteq H_{i_1} \cup \cdots \cup H_{i_n} \). This implies \(D = (H_{i_1} \cap D) \cup \cdots \cup (H_{i_n} \cap D) \). Therefore \(f(c) \in f(D) \) implies \(f(c) \in f(H_{i_k} \cap D) \subseteq G_{i_k} \) for some \(k \leq n \). Thus \(f(D) \) has the finite subcover \(G_{i_1}, \ldots, G_{i_n} \).

2. Let \(f : D \to \mathbb{R} \) be continuous at each \(c \in D \). If \(D \) is compact then \(f(D) \) is compact, therefore \(f(D) \) is closed and bounded. Therefore \(m = \sup f(D) \) exists (why?). Therefore \(m \) is an accumulation point of \(f(D) \) (why?). Therefore \(m \in f(D) \) (why?). Therefore there exists \(c \in D \) such that \(f(c') \leq f(c) \) for all \(c' \in D \) (why?). Many calculus problems are stated in the form “find the maximum value of \(f(x) \).” The existence of the maximum value is guaranteed by continuity of \(f \) and compactness of the domain of \(f \).

3. Give an example of a function \(f : D \to \mathbb{R} \) such that \(f \) is continuous at every \(c \in D \) but there is no \(c \in D \) which satisfies \(f(c') \leq f(c) \) for all \(c' \in C \). Use a bounded set for \(D \) and give a formula for \(f \).

4. Let \(f : [a, b] \to \mathbb{R} \) be continuous at every \(c \in [a, b] \). Then \(f([a, b]) \) is an interval. Proof: by compactness of \([a, b]\), we know that \(f([a, b]) \) is closed and bounded. Therefore, by the logic in question 2, setting \(m = \inf f([a, b]) \) and \(n = \sup f([a, b]) \), we have \(m \in f([a, b]) \) and \(n \in f([a, b]) \), and there exist \(c_1, c_2 \in [a, b] \) such that \(f(c_1) \leq f(c) \leq f(c_2) \) for all \(c \in [a, b] \). We will show that \(f([a, b]) = [f(c_1), f(c_2)] \). Let \(k \in [f(c_1), f(c_2)] \) be given. We must show that \(f(c) = k \) for some \(c \in [a, b] \). We will produce \(c \) using the completeness axiom. Let \(S = \{ x \in [a, b] : f(x) \leq k \} \). Then \(S \) is a non-empty bounded set (why?), therefore it has a least upper bound \(c \) which belongs to \([a, b]\). Suppose \(f(c) \neq k \). Then \(f(c) < k \) or \(f(c) > k \). We will obtain a contradiction. First, we will show that \(f(c) > k \) is ruled out: find a sequence \((x_n) \) in \(S \) which converges to \(c \) (why can this be done?). By continuity, \((f(x_n)) \) converges to \(f(c) \). Since each \(f(x_n) \leq k \), we must have \(f(c) \leq k \). (Which theorem in Section 17 justifies this statement?) So apparently \(f(c) < k \). Choose \(\epsilon > 0 \) sufficiently small that \(f(c) + \epsilon < k \). By continuity of \(f \), we can find \(\delta > 0 \)
so that $c - \delta < x < c + \delta$ guarantees $f(c) - \epsilon < f(x) < f(c) + \epsilon$. Therefore $f(c + \tfrac{\delta}{2}) < f(c) + \epsilon < k$. This forces $c + \tfrac{\delta}{2} \in S$, which contradicts the fact that c is an upper bound of S. Therefore we must have $f(c) = k$.

5. How can we use the information in Question 4 to prove that there exists a real number c such that $c^5 + c = \sqrt{2}$?

6. Give an example of a function $f : [a, b] \to \mathbb{R}$ such that $f([a, b])$ is not an interval.

Homework for Section 22, due ???: (only the starred problems will be graded):

1, 2, 3*(e), 4*, 7*, 9*, 11*, 13*(a)

Hints:

4. Let $f(x) = 2^x - 3x$. You can assume that this is a continuous function at all $c \in \mathbb{R}$. Use the Intermediate Value Theorem (proved in Question 4).

7. The hint in the back of the book is a good one.

9. What kind of an interval can $f([a, b])$ be, given that it is a subset of \mathbb{Q}?

11(a). Prove that $f(x) = |x - p|$ is continuous by cases. First show that it is continuous at every $c > p$, then that it is continuous at $c = p$, then that it is continuous at every $c < p$. Give an $\epsilon-\delta$ proof for each case. For example if $c > p$ then choosing a small enough δ you can assume that $|x - c| < \delta$ implies that $x > p$, so $f(x) = x - p$. This allows you to drop the absolute value symbols and makes it easier to find δ, given ϵ.

11(b). Why is $f(S)$ compact? Why does this guarantee that q exists?

13(a). Argue by contradiction. If f is neither strictly increasing nor strictly decreasing, there are many possible cases: we could have $x_1 < x_2 < x_3$ with $f(x_1) < f(x_2) < f(x_3) < f(x_1)$ (neither strict increase nor strict decrease) and $f(x_3) < f(x_1)$. Let $k = f(x_3)$. Since $f([x_1, x_2])$ is an interval, it contains all the values between $f(x_1)$ and $f(x_2)$ (it could contain other values as well). Since k belongs to this interval, $k \in f([x_1, x_2])$. Therefore $k = f(x)$ for some $x_1 \leq x \leq x_2$. Since $k = f(x_3)$ and f is injective, $x = x_3$. But this contradicts $x_3 > x_2$. Work out all the other cases.