Math 375 Week 5 Lecture

Sections 3.3 and 3.4

Section 3.3: The Traveling Salesman Problem

Branch and Bound algorithm: Let C be a Hamilton circuit. Then there must be edges of the form v_1v_{a1}, v_2v_{a2}, etc. The cost of this is $c_{1a1} + c_{2a2} + \cdots$. So at least one number per row is used. Subtracting minimum row number from each row, any Hamilton circuit corresponding to the original matrix is $\Delta +$ the corresponding Hamilton circuit corresponding to the new matrix. In the new matrix, if C is a Hamilton circuit, there must be edges of the form $v_{b1}v_1$, $v_{b2}v_2$, etc. The cost of this is $c_{b1} + c_{b2} + \cdots$. So at least one number per column in the new matrix. So now any Hamilton circuit corresponding to the original matrix is $\Delta + \Delta'$ the corresponding Hamilton circuit corresponding to the new matrix. We will always represent a weight matrix as $\Delta +$ a matrix in which each row and each column contains a 1.

Now look at any entry c_{ij} containing a zero. Have a choice of using that edge or not. If you don’t use it, replace that entry by ∞ and adjust Δ. But if you do use it, set $c_{ji} = \infty$ (can’t use edge) and delete row i and column j since nothing else will be chosen from it and adjust Δ. To decide which move to make, go with the smaller Δ.

At every stage have made a decision about whether or not to use an edge, so the process has to terminate.

Now suppose $c_{ij} \leq c_{ik} + c_{kj}$ and $c_{ij} = c_{ji}$ are always true. Then it is possible to construct a Hamilton Circuit with weight less than twice the minimal weight circuit. Method: In principle there is a least cost Hamilton circuit C. Remove the costliest edge to create a Hamilton path P. Write

$$P = p_1 \rightarrow p_2 \rightarrow \cdots \rightarrow p_n.$$

Then all these weights are $\leq c_{p,np_1}$. We will construct a Hamilton circuit H with $W(H) \leq 2W(C)$. Let $C_0 = p_1 \rightarrow p_1$ and $P_0 = \emptyset$ and $S_0 = C$. Then $W(C_0) \leq 2W(P_0)$. Let $C_1 = p_1 \rightarrow p_1 \rightarrow p_1$, where $c_{p_1p_1}$ is minimal with $p_1 \neq p_1$. Then $W(C_1) = c_{p_1p_1} + c_{p_1p_1} \leq c_{p_1p_2} + c_{p_2p_1} = 2c_{p_1p_2} \leq 2c_{p_1p_1}$. Now remove p_1 from S_0 to create S_1 and set $P_1 = p_1p_n$. In general, assume a cycle C_k has been built with $w(C_k) \leq 2W(P_k)$, where P_k is a subset of k edges of C. Let yz be least weight edge connecting vertex in C_k to vertex
not in C_k. Let $z'z''$ be first edge in S_k exiting C_k along a path to z, and let $y'y$ be edge in C_k. To create larger cycle C_{k+1}, remove $y'y$ and insert $y'z$ and zy. By triangle inequality,

$$c_{y'z} \leq c_{y'y} + c_{yz}.$$

By choice of yz,

$$c_{yz} \leq c_{z'z''}.$$

Therefore

$$W(C_{k+1}) = W(C_k) + c_{y'z} + c_{zy} - c_{y'y} = W(C_k) + (c_{y'z} - c_{y'y}) + c_{zy} \leq W(C_k) + 2c_{zy} \leq W(C_k) + 2c_{z'z''}.$$

Remove $z'z''$ from S_k to obtain S_{k+1}. Add $z'z''$ to P_k to obtain P_{k+1}. We now have $W(C_{k+1}) \leq 2W(P_{k+1})$. When done we have $W(C_n) \leq 2W(P_n) = 2W(C)$.

Section 3.4: Tree Analysis of Sorting Algorithms

Bubble Sort: Swap elements out of place from end of list to beginning. This places smallest element first. Takes $n - 1$ comparisons. Now sort remaining elements. $O(n^2)$ comparisons.

Merge Sort: Split list in two, sort the two halves separately, then merge. Obtain roughly $f_n = 2^n + 2f_{n-1}$ comparisons. Write this as a tree with 2^n at level 0 and f_n, f_{n} at level 1. Keep on going. Get $n2^n$. If n elements then $O(n \log_2 n)$ operations.

Heap Sort: A heap is elements in a tree structure with the parent always larger than the children. Given list x_1, \ldots, x_n, load arbitrarily into tree structure. One element trees are already a heap. Otherwise, make each of the two subtrees a heap, then bubble the top element into place. If the height of the tree is n, then elements are bubbled a distance no greater than n, so with 2^n elements get at most $n2^n$ operations. If n elements then $O(n \log_2 n)$ operations to create a heap. To sort the elements, remove the top element, then bubble the next element up. Takes $O(n \log_2 n)$ operations to remove all elements of heap. In the process, we are sorting the original list.