Math 641 Abstract Algebra

Questions for Section 6: Cyclic Groups

1. State the Division Algorithm.
2. Apply the Division Algorithm using \(m = 15 \) and \(n = 200 \).

Remark: Questions 3 through 6 deal with Theorem 6.6.

3. In the second sentence, \(m \) is the smallest positive integer such that \(a^m \in H \). What guarantees the existence of \(m \)?
4. The goal is to show \(H = \langle a^m \rangle \). So let \(b \in H \) be given, and write \(b = a^n \). Want to show \(a^n = (a^m)^q \) somehow. Method: \(n = mq + r \) for some \(0 \leq r < m \). Therefore \(a^n = a^{mq + r} \). Why does this imply \(a^r \in H \)?
5. Why does this imply \(r = 0 \)?
6. Why does this imply \(a^n = (a^m)^q \)?

Remark: Questions 7 through 11 deal with the greatest common divisor of two integers.

7. Fix \(r, s \in \mathbb{Z} \). Let \(H = \{ nr + ms : n, m \in \mathbb{Z} \} \). Name three elements in \(H \), given that \(r = 6 \) and \(s = 8 \).
8. Fix \(r, s \in \mathbb{Z} \). Let \(H = \{ nr + ms : n, m \in \mathbb{Z} \} \). Given that \(H \) is a subgroup of \(\langle \mathbb{Z}, + \rangle \), why can we say \(H = d\mathbb{Z} \) for some positive integer \(d \)?
9. Explain why \(d \) divides \(r \). Explain why \(d \) divides \(s \).
10. If \(k > 0 \) divides \(r \) and \(s \), explain why \(k \) divides \(d \).
11. Why does this imply that \(d \) is the smallest positive divisor of \(r \) and \(s \)?
12. Let \(G \) be a finite group generated by \(a \), and assume 4 is the smallest positive integer such that \(a^4 = e \). Describe the isomorphism between \(G \) and \(\langle \mathbb{Z}_4, +_r \rangle \).
13. Is it safe to say that \(G \cong \langle \mathbb{Z}_m, +_m \rangle \) whenever \(G \) is a finite group generated by \(a \) and \(m \) is the smallest positive integer such that \(a^m = e \)?

Remark: Questions 14 through 24 deal with Theorem 6.14

14. The hypotheses in Theorem 6.14 are that \(G = \langle a \rangle \), \(|G| = n \), and \(H = \langle a^r \rangle \). Why is \(n \) the order of \(a \)?
15. Suppose that \(a^k = e\) for some positive integer \(k\). Using the division algorithm, we can say that \(k = nq + r\) for some \(0 \leq r < n\). Why does this imply that \(a^r = e\)? Why does this in turn imply that \(r = 0\)? Why does \(r = 0\) imply that \(n\) divides \(k\)?

16. To compute \(|H|\), we must compute the order of \(a^s\). So we compute the list \(a^s, a^{2s}, a^{3s}, \ldots, a^{ms}\), where \(m\) is the first integer such that \(a^{ms} = e\). Why does this imply that \(m\) is the smallest positive integer such that \(n\) divides \(ms\)?

17. Our goal is to compute \(m\), the order of \(a^s\) and therefore the size of \(H\). Let \(d = \gcd(n, s)\). We know that \(d = un + vs\) for some integers \(u, v\), and we know \(d\) divides both \(n\) and \(d\), so we have \(1 = un_0 + vn_0\), where \(n_0 = \frac{n}{d}\) and \(s_0 = \frac{s}{d}\) are integers. Why does this imply that \(\gcd(n_0, s_0) = 1\)?

18. Why is \(\frac{ms}{n}\) equal to \(\frac{ms_0}{n_0}\)?

19. Why is \(\frac{ms_0}{n_0}\) an integer?

20. We know now that \(n_0\) divides \(ms_0\). Why does this imply that \(n_0\) divides \(m\)? (See page 62.)

21. We know by algebra that the smallest integer \(m\) such that \(n\) divides \(ms\) is the same as the smallest one such that \(n_0\) divides \(ms_0\). In other words, \(m\) is the smallest integer such that \(n_0\) divides \(m\). Why does this imply that \(m = n_0\)? Hence \(|H| = n_0 = \frac{n}{d} = \frac{n}{\gcd(n, s)}\).

22. If \(\langle a^s \rangle = \langle a^t \rangle\), then both subgroups have the same size. Why does this imply that \(\gcd(n, s) = \gcd(n, t)\)?

Conversely, knowing that \(s\) and \(t\) are two positive integers such that \(\gcd(n, s) = \gcd(n, t)\), how do we know that \(\langle a^s \rangle = \langle a^t \rangle\)? We will show in the next two questions that \(\langle a^p \rangle = \langle a^{\gcd(n, p)} \rangle\) for all \(p\), which will imply that \(\langle a^s \rangle = \langle a^{\gcd(n, s)} \rangle = \langle a^{\gcd(n, t)} \rangle = \langle a^s \rangle\).

23. Write \(\gcd(n, p) = d\). Then \(d\) divides \(p\). Why does this imply that \(a^p \in \langle a^d \rangle\)? Why does this in turn imply that \(\langle a^p \rangle \subseteq \langle a^d \rangle\)?

24. Given \(\gcd(n, p) = d\), we know that \(un + vp = d\) for some integers \(u\) and \(v\). Why does this imply that \(a^{up} = a^{d}\)? Why does this in turn imply that \(a^d \in \langle a^p \rangle\)? Therefore \(\langle a^d \rangle \subseteq \langle a^p \rangle\). Combining this with Question 23 we see that \(\langle a^p \rangle = \langle a^d \rangle = \langle a^{\gcd(n, p)} \rangle\).
Homework for Section 6 (only the starred problems will be graded):

1, 5, 11*, 18*, 19, 22*, 33, 35, 37, 45*, 55*

Hints:

11. If s is a generator of $\langle \mathbb{Z}_{60}, +_{60} \rangle$ then s has order 60. Using group notation, $s = 1 + 1 + 1 + \cdots = 1^s$. We know that 1 is a generator of $\langle \mathbb{Z}_{60}, +_{60} \rangle$. So the order of s is $\frac{60}{\gcd(60, s)}$ by Theorem 6.14. This implies that $\gcd(60, s) = 1$. So the number of generators has to be the number of values of s between 0 and 59 which satisfy $\gcd(60, s) = 1$.

18. As in Problem 11, we can write 30 = 1^{30} using group notation in $\langle \mathbb{Z}_{42}, +_{42} \rangle$. Now apply Theorem 6.14.

22. For each $k \in \mathbb{Z}_{12}$ compute $\langle k \rangle$. Many of the groups obtained will be the same, since the nature of the group depends only on $\gcd(12, k)$ (as we saw in Question 24). Now arrange the subgroups in a diagram similar to Figure 5.12, page 52.

45. Assume the group operation in \mathbb{Z} is addition. Verify Conditions 1, 2, 3 of Theorem 5.14, page 52.

55. To show that $\langle \mathbb{Z}_p, +_p \rangle$ has no non-trivial subgroups means that every subgroup not equal to $\{0\}$ must be equal to \mathbb{Z}_p. We know that all the subgroups are cyclic and have the form $\langle a \rangle$ for some $a \in \mathbb{Z}_p$. You must show that if $a \neq 0$ then a has order p. Write $a = 1^a$ in group notation. Use the formula for the order of a, combined with the fact that p is a prime number, to show that a has order p when $a \neq 0$.