Choose two of the following six:

(1) Prove ONE of the remaining cases of the Saarkovskii Theorem. The cases are:
 (a) Prove that if \(f \) has period \(p \cdot 2^m \) with \(p \) odd, then \(f \) has period \(q \cdot 2^m \) for any odd \(q \) with \(q > p \).
 (b) Prove that if \(f \) has period \(p \cdot 2^m \) with \(p \) odd, then \(f \) has period \(2^l \) for all \(l \leq m \).
 (c) Prove that if \(f \) has period \(p \cdot 2^m \) with \(p \) odd, then \(f \) has period \(q \cdot 2^m \) for any even \(q \).

(2) Given \(f : I \to I \), we construct a new map, \(D(f) \), called the double of \(f \) whose periodic points will have exactly twice the period of those of \(f \) (and adds an additional fixed point). To construct this map, divide \(I \) into thirds and compress the graph of \(f \) into the upper left corner of \(I \times I \) as in the figure. Lastly, linearly extend the map as depicted in the figure.

(3) Let \(j \) be an integer. Construct a map of period \(2^j \), but not of period \(2^l \) for all \(l > j \). Does your map have points of period \(2^m \) for \(m < j \)?

(4) Construct a map of period 10 and all periods implied by period 10 in the Saarkovskii ordering, but none others.

(5) Does there exist a map with periods of order \(\{1, 2, 2^2, ..., 2^j, ...\} \) but no other periods? (Hint: Can you take the limit of \(f_j \) as \(j \to \infty \), where \(f_j \) is the map you might have constructed in Exercise 3.)

(6) Let \(A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \). Prove that the \(Tr(A^k) = Tr(A^{k-2}) + Tr(A^{k-1}) \). What does this imply about \(\Sigma_A \)?